Search the Community
Showing results for tags 'offroad'.
-
Among those 3 buggy`s/ truggy`s that I have to test-build them I just managed to add a 4th one. This one is the first 4x4 with 2 motors. As usual, it packs some buggy motors (2 of them, as I said), a servo, removable body (at least semi-detachable), positive caster-angle and full independent suspension. The weight is just under 900g; pretty decent, considering it is 4x4 and that has a pretty big body and some useless pieces to imitate the electric motor of the real RC buggy. Unfortunately, I think that this will only be available with normal RC batteries, because almost no existing hub for Lego is not fitting.
-
My next alternate model of the 42125 set - Dune Buggy It's a replication of the well-known Meyers Manx dune buggy. Also the BF Injection in the GTA games. Size: L35, W19, H13, cm Parts: 665 Weight: 610g. Features: - Opening bonnet and trunk - Full independent suspension - H4-engine - Working steering wheel. A width is 2 studs shorter, than it's in the original set, so I used the floating differential suspension system. Working well. See the video: Instruction is available on Rebrickable: https://rebrickable.com/mocs/MOC-76011/paave/dune-buggy/
-
[MOC] 6x6 Ural 375D
Sariel posted a topic in LEGO Technic, Mindstorms, Model Team and Scale Modeling
I present a little off-road experiment of mine. It's a large-scale model of the Soviet Ural 375D heavy-duty military truck, a truck I've had the pleasure of driving last year. The model's look is somewhat compromised but it achieved the primary goals, which included stress-testing the planetary wheel hubs, the new differential and my 4-speed remotely-controlled sequential transmission. I'm happy to report that none of these components failed and the truck, which weighs 3.94 kg, is able to drive over a 6 cm tall book or climb inclines slightly above 15°. It's not a perfect model, and it's truly sluggish, but oh well. Functions: remotely controlled drive and steering remotely controlled 4-speed transmission (with the lowest speed disabled so I could use a PF Servo as shifter) remotely controlled pneumatical locking of differentials in all three axles 6x6 drive suspension: live axles #1 and #3, pendular axle #2 (for improved chassis rigidity and to maintain ground clearance) switch-operated rear winch opening hood with a V8 piston engine running at constant speed and opening doors and a tiny detail that I really wanted to get done: a see-through grille -
Hey everyone, you must check out the share your trucks forum for many talented eurobricker’s inspirational truck designs! But this topic is for those who have made their own custom trailers and mods that they are proud of! I will start first Here is my trailer for my custom Semitruck. I am currently designing a nice off-road capable caravan which I hope some of you would like to see, I am almost finished and I will post it here when I am done.
-
Hello, fellow Eurobrickers! I designed this 6x6 truck today as I challenge and I didn't think much about it but It turned out to be a success (in my eyes). I hope you guys like it. The design was inspired by a mix of old offroad 6x6 military trucks. I say it just needs to do the job and it doesn't need to look pretty while doing it. Here is a list of its features: 6x6 drivetrain springless suspension Modular design Remote control Powered by 2L motors Steering by 1M motor Removable tray (all sides can be dropped. Openable bonnet Openable doors 2 speed gearbox Hi-Low gear For more photos please go to our Bricksafe Page here Please go easy on the look it was built in one day, I would love some feedback. Happy Mocking CrazyKreations
-
Here's my replication of the classic Range Rover 3 door Info: Scale: 1:13 Size: L35, W15, H16, cm Weight: 1069g Parts: 1085. Video: Features: - 4x4 - Dependent suspension - Panhard rods on both axles - Opening doors, bonnet, tailgate - Adjustable seats - Modular construction - Remote control with PF: 2L, Servo, IR, LiPo. Original truck: Building Instruction can be found on Rebrickable: https://rebrickable.com/mocs/MOC-79523/paave/range-rover-classic/#details
-
Here's my next MOC: I-Beam Suspension Trophy Truck Size: 36L, 16W, 16H, cm Weight: 702g Parts: 843 Features: - Independent front I-Beam suspension - Live axle rear suspension - Opening doors with locks - Opening bonnet with holder - HOG-steering - Fake engine - Modular construction Video: More pictures: Instruction available on Rebrickable: https://rebrickable.com/mocs/MOC-102687/paave/i-beam-suspension-trophy-truck/
- 14 replies
-
Good day, everyone! This project has started as an idea of creating better a bodywork for 42099, but after some time in development it turned into undependent rc modification of Defender 42110. I took inspiration from Bowler WildCat and Bowler Nemesis which are extreme buggy-like offroaders based on Land Rover cars. So I pondered the question, What if... new Defender would be made into Bowler? In result - original defender has become lower, has got lower roof profile, bigger tires, front and rear pushbars, snorkel pipe, stronger footrests, two sets of additional lights and fog lights, antennas, front and rear mudguards, some chains ('cause chains are cool!). Engine was swapped from 6-inline to V8-supercharged! (After I made this model in spring, LR has announced that they will actually make a V8 Defender. Sadly, not supercharged :) Engine and cooling fan are connected to the front axle via chain links. (Yes, chains ARE cool. I had to buy whole Ducati set for this) And the most important - Control+ components. As this Bow-fender shares control profile with 42099, set of electrics is the same. One XL+ for each axle One L+ for steering SmartHub for SmartThings And then I found out that I am... well... not really good in making offroad chassis. At least it was my first try. So I tuned it as much as possible and made a note for future to learn more about lego offroading. (I think, I'll start with Zetros). Video of how this Bow-fender drives on everything it can is of course here: Watch till the very end! And Thanks for watching. Subscribe. P.S. This cat was walking nearby, while I was making video, so I asked him to participate. So there is A cat in the video now, instead of THE Cat - erpillar :)
-
Hi All, Although I have posted a few pictures previously, I wanted to make a proper writeup of my Trial Unimog alternate of the Zetros set (42129), because I think sharing the design process is valuable for people around here. Also, I am going to share my thoughts about the set itself as a parts pack. But for the curious ones, here's an action video of the end result and a short summary of the features: Features: - good actual outdoor performance :) - permanent AWD, no differentials - 2-speed gearbox, faster gearing than Zetros - relatively large increase in ground clearance - 4-link suspension on the back, large articulation, soft suspension - 3-link suspension with Panhard rod on the front, slightly larger and softer articulation than the Zetros - opening (and lockable) doors and trunk bed When building alternate models, I always try to build something different from the A model, both functionally and in its looks. So when considering what to build out of the Zetros, keeping the Mercedes brand but going for a different form factor, my first idea was a G-Wagon - quickly taken by Grohl himself. Then I though, let's fall back to a Jeep - also taken quickly by Tim.. Unimog was on my list of potential alternates, but I wasn't sure about it yet. But one thing was sure: I wanted to improve the actual off-road performance over the Zetros. So putting the form factor aside a bit, I started experimenting with chassis and suspension designs. One option I had in mind was to keep the live axle setup, but improve it to make it actually useful for off-roading: increase suspension travel, ground clearance and responsiveness. Furthermore, I wanted to see how lightweight the axles could be built, because the Zetros's axles are pretty bulky. I was okay with doing away with the diff-lock, since I wanted to use the M motor for a 2-speed gearbox anyway (just like others). During experimentation with axle designs and suspension travel, I have realized that the 3-link live axle setup of the Zetros is not only limited by the springs' short travel, but also by the 3rd link on the top. That link cannot rotate sideways on the chassis side and is mounted very high on the axles, and as the axle tilts, its top can move sideways significantly, and as the link cannot follow it sideways, it limits the axle's tilting movement; hence very limited articulation. The setup only works for a short range of movement as on the Zetros, which is limited anyway by the springs, but cannot work for a setup that aims for more articulation. One way out of this is to allow the 3rd link to rotate and follow the side movement of the tilting axle, but then the axle needs fixing sideways. There are two ways to fix that. Either a 4-link triangulated setup, or a 3-link setup with a Panhard rod. Although the Zetros does use a Panhard rod at the front, it is unrealistically mounted and too short, that would cause kind of bump-'steer' for larger axle articulation (not exactly bump steer, but more like shifting the whole axle sideways). So after taking the limited number of suspension parts into account (only 6 towball sockets left out of 10 since 4 must be used for mounting the front wheel hubs, and only 1 6L link available in the set), I opted for the following design: on the rear axle, I used 4 towball sockets for a 4-link triangulated setup with long links, allowing the upper links to rotate sideways and follow the movement of the axle. The springs are attached to the middle of the lower links. This allows for long upwards movement of the axle at the end of the links, and makes the suspension much softer even with the hard springs. Pretty solid and allows for large articulation, just what I wanted. Furthermore, the axle itself is quite slim and rigid, and has good ground clearance, especially in the middle where it's most needed (as proven by my off-road tests). The front axle was more challenging. First off, increasing the ground clearance is only possible with one trick: the towball socket liftarms must be built at an angle, going upwards in the middle, and that limits possibilities. Second, the steering motor and its mounting takes space on the axle, and is in the way for the suspension mounting points. I have experimented with two other options: steering through a driveshaft coming from the chassis, but the placement of the motor in the chassis was problematic do to space required by all other motors and the battery, along with the largely articulated suspension design; second I tried to put the steering motor above the front axle, actuating steering through a linkage system. Although, this worked quite well mechanically (verified with the Powered Up app), unfortunately, the Control+ app itself killed this direction: the app limits the steering motor angle to about a 25 degrees less than the calibrated range, which is normally 90 degrees or motor rotation, resulting in about 65 degrees in case of the Zetros (that's why it's steering is so bad by the way). Now in my alternative steering design, the max calibrated angle would have been 45 degrees, and the 25 degrees minus by the app resulted in about 20 degrees of movement, resulting in almost no actual steering at the axle. Pretty sad that you can build something mechanically sound and then not able to control it with the app :( So I fell back to mounting the motor on the axle, and used the remaining 2 towball sockets for two lower links, which again, I built longer to allow for a bit more articulation. Luckily, I was able to mount the motor in a way that it allowed to use the single 6L link as the 3rd link, allowing free sideways tilting movement of the axle, as it is attached to a towball pin on the chassis end as well. I also experimented with the spring mounting technique of the rear, but it was weak and wobbly on the front without the 4-link setup, so I went back to mounting the springs on the axle. However, I managed to move the springs closer to the center of the axle, resulting in both slightly larger articulation and softer suspension. Finally, the axle is fixed sideways by a long Panhard rod going from one end of the chassis to the other end of the axle, eliminating bump 'steer' quite well even at larger articulation. As a side note about parts, it would be really nice if the set had another 6L link somewhere, for example as a Panhard rod on the rear axle. It could be used to build another 4-link suspension to the front, and also as a steering link in an independent setup (which is problematic to build for other reasons as well). So after sorting out the two axles and the suspension, I though this could be used in a Unimog chassis. Though not too different in form from the Zetros, but at least it keeps the brand. Furthermore, I decided to make it different in its functions: the first step was focusing on a proper suspension. The second was the drivetrain. And that also caused some difficulties. Unimogs are short. You'd think that's not a big problem at this scale, as many RC Unimogs have been built before, but it is with the latest drivetrain parts. The new CV joint with a sliding axle hole is a whopping 8 studs long!! (Compare that to a 3L U-joint; sure, the CV joint has the axle built in on one side, but this construction limits builds quite a bit. Not sure why the new sliding variant needed to be 2 studs longer, I thought it would be just 1 longer, enough for the sliding, which is typically about half a stud, but 1 stud max). So two of those, plus, two non-sliding ones at 6 studs length, and your driveshaft is already 28 studs long. Add to that the amount of space required by the differentials (2 studs on each end until the axle center), and your axle distance cannot be less than 32 studs. Add one more to get a nice odd length middle section, and we are at 33 studs from axle to axle. It is quite long for a Unimog. (As a side note, I tried to split the driveshaft in two halves, shifted sideways in the opposite direction to let them overlap in length and hence make things shorter, but it did not work out due to the axle length limitation of the CV joint part and also space limitations from the motors). So because of this, and other considerations I decided to do away with the differentials altogether. It saves 2 studs in length. It allows for a slightly faster 12T / 20T gearing; the Zetros is just too slow. Furthermore, it allows for larger ground clearance, as the differential does not stick out from the axle. It even allows for a slimmer axle design, as there is more space in all directions, such as for mounting the steering motor. And last but not least: no differential - no need to lock them :) With unlocked differentials the off-road performance would be bad anyway. Once I settled for the length and the drivetrain, I needed to place the remaining motors and the gearbox. I was able to sandwich the gearbox between the drive motors, and put the gearbox's driveshaft motor on top, the flip-flop beams and the frames proved to be very useful for building a strong but lightweight chassis. The final challenge was the driveshaft from the gearbox motor. I am not sure why TLG used this motor here as it is super cumbersome to work with. It needs substantial down-gearing (and the right amount for your actual application, which is 180 degrees final turn for a gearbox, but 90 degrees for a diff-lock), a clutch mechanism for safety and physical end stops for calibration. These all take up space as they need to be routed somewhere. Things would have been much easier with another L motor.. (Maybe to make the set slightly cheaper? Or TLG is trying to get rid of these motors on stock? They don't seem to fit well into the PU system without positional control.) Anyway, finally the chassis of the Unimog was complete. I used the remaining CV joints to connect the drive to the spinning fan in the front :) The rest was just bodywork and placing that big hub somewhere. I opted for roughly the same position in the cab as the Zetros, but with the cables inside, to allow easy access to the batteries for replacement. For the design and styling, I took some inspiration from online sources like this one because of its color scheme, but I wanted to minimize the cab length as there weren't enough panels for a 4-door version. I built the cab with no opening hood to make it solid :) And also made the doors lockable to avoid them opening automatically when driving around.. Finally, the black panels were just the right size and amount to cleanly finish the bed, both the sides and the floor. The bed floor opens (but lockable) to see the gearbox, and to give room for accessing the batteries. I have also added fenders and the usual decoration like the rollbars, exhaust pipe, mirrors, ladders. Here are some renders of the whole build. As you can see, I did not use any green parts, as they would have only added clutter to the otherwise clean bodywork I think. Some more notes about the parts of the set apart from the ones mentioned above. The set has a good amount of paneling and beams and connectors, although the green parts are a bit less useful since they are limited in number and size. Another shortcoming of the set is the available gears. It has all sizes, but their number is lacking in some cases and hence high gearing ratios are hard to achieve. For example if you try to deviate from the default drivetrain, those gears will be missing for example for a simple down-gearing for the gearbox motor.. More images can be found on Bricksafe. Building instructions are available on Rebrickable. I did not know too much about Unimogs in the beginning, but during the research and designed process I actually came to like Unimogs quite a bit. I like that they are compact but seemingly efficient machines, and the trial versions actually look pretty cool. And I am actually quite happy with the end result. Let me know how you like it and your opinion on the set's parts! Cheers, Viktor
-
Hi, I am building next MOC based on model which can be found in the game Snowrunner. I picked KHAN 39 Marshall - it is based on real world vehicle - UAZ 3151. I would like to ask for your advice with one of my biggest problem in mocing - creating a decent looking body. When you see the photos and think "It doesn't look like UAZ..." then YES - you are right and: I wish to focus on body and look (I don't want to discuss functions here, they are there and they are fine). As you can see, the main color is picked (some parts in proper colors are missing, but is not a problem when bricklink is around, the same goes for some missing obvious parts), but any smaller recolors are possible. The biggest problem I have is the front grill. It looks almost ok, but as the grill for Jeep or Land Rover, not the UAZ. I tried to recreate UAZ grill, but I failed miserably. As you can see, there is no much space for it and I am also very pleased with perfect connection of the front and the hood and I definitely will keep that. Important factor is also the fact, that body needs to be as one piece, which can be easily removed, so the body demands some rigidity. Also I plan to add front and rear lights, but at first I need to be sure that the body is right. So, could you help me a little to improve the look so it would be closer to UAZ body look? :)
-
A model I've been working for a little while, not much to show yet but pictures soon. 6x6 truck with locking rear diffs and 2 central diffs in the 6x6 drive making for a combination of power delivery choices, similar to the drive train of the mercedes amg 6x6. Using tires from 42054 so its, big near half a meter or so now. Rear live axel suspensions front independet fake v 10 soon to be geared in, possinble addition of 4 speed gearbox and 4 xl motors for drive. with fully rc gear and diff lock control and who knows what else?
-
I think anyone who ever used the portal hubs came to this issue. The hubs simply have the steering pivot point so far from the center of the wheel, that you need to either reduce the steering angle, or have a model with large fenders. Today I came up with this simple mechanism to compensate for that by simply turning the whole front axle in the opposite direction. The two tilted 6L links are usually used to keep the axle from moving forwards/backwards. In my case they are attached to the steering rack at a high angle. Moving the steering rack will cause the geometry of the axle to change - rotating it to (mostly) compensate for the large pivot point: Of course this is just an idea for now, but it should be easy to implement on a real model. The wider the axle, the better the compensation. Of course the axle has to be designed in such way, that suspension, drive and steering system will be able to work with this degree of movement.
- 19 replies
-
- steering
- suspension
-
(and 5 more)
Tagged with:
-
Hi everybody! today i wont to show you my new creation - Gaz 34-6x6 soviet truck. This truck is modification of legendary Gaz 66.I'm crazy about 6x6 trucks,thats why I built Gaz 34. So,here it is: As you see,this is not original configuration of Gaz 34.I'm added portal axles(without diffs),bigger wheels and slightly changed the rear suspension.Finally-it is really good trial truck,with great grip on sand,grass (thanks to the wheels from 42054). So,lets look for the technical specifications: -6x6 wheel drive,without any diffs -portal axles -huge offroad wheels -2 buggy motors for drive -1 medium motor fot steering+micro motor(they tern steering wheel in the cabin) -Sbrick -3s li-fe battery(9,9 volts) -Leds lights(headlights) -balanced rear suspension(thats why truck has really good suspension travel) Let see it in action! https://youtu.be/hHDJLmvZ4BA
-
Hello everyone! This is another Jeep which I built while leaving some unfinished projects on the shelf. For three months I have had no time for LEGO mainly because of my nursing job. (Did you see Wolverine taking care of Professor X in the movie "Logan"? I do something like that ) I really needed to take a new step forward for my motivation. Instructions of former two MOCs are still work in progress. I am sorry to keep you waiting. Jeep Wrangler Weight: around 1100g (with hardtop) -2 L motors for propulsion -M motor for steering -Front and rear open differential -Linked pendular suspension without shock absorbers -Openable hood, doors and tailgate with lock -LED for headlights -Detachable body The chassis is not realistic at all. It was new to me to build the suspension without using shocks. It even doesn't have sway bars. Suspension travel is long enough for this scale. It worked fine when driving over small obstacles. But on a steep incline (40+ degrees), it became unstable and tended to roll over sideways. That move was understandable because it had no anti-roll mechanism. I tried to put the battery box close to the center as possible for better weight distribution. Passenger seat was sacrificed for it, but the whole model with hard top is still slightly rear-heavy. Jeep Wrangler is known as one of the most modifiable vehicle on earth. So I made a few options such as 2-piece hardtop, tube doors, bumpers and another color scheme. But the best way is building more realistic chassis for this body. Unfortunately I could not make it this time. Maybe in the future... Building instructions for red version with those options above available at Rebrickable. I hope you will like it!
-
Well, I was not really 100% happy with the buggy I made and in that post I asked for advice on drive axles. Unfortunately as I mostly only have old pieces (pre dark-ages) I could not make most of the suspensions So I tried one that I could use (I originally wanted to make a mini front wheel drive car) and made a mini car with what I could. I'm really proud of what has turned out, the truck looks like a jeep/hummer as is so freaking cute I designed the chassis so that the bodies are interchangeable. I think that a competition where everyone is to make a body for one type of chassis would be really cool, but i'm not famous so it seems far fetched Thanks guys, <forgot to add> The reason this car is a little slow is that my family forced me to purchase rechargeable batteries meaning that the output is 7v not 9v. I would get a buwizz but that is expensive
- 8 replies
-
- moc
- technic rc
-
(and 3 more)
Tagged with:
-
Hey guys I wanted to test out the unimog suspension but I forgot how it was set up so I tried what i remembered of it into this buggy's rear axle: But I think I somewhat messed up What are the principles for live axles? And on a completely unrelated topic, does anyone have tips to make driven and suspended front wheel drive? Thanks Update: Just took it apart, probably gonna use the advice to make something better.
-
Hi, ___ EDIT __________________________________________________________________ __________________________________________________________________________ HERE ARE INSTRUCTIONS FOR CURRENT VERSION: (description later in this topic) https://rebrickable.com/mocs/MOC-28281/Horcikdesigns/offroader-for-overland-adventure/#bi ___________________________________________________________________________ ___________________________________________________________________________ This is my latest attempt at building offroad car. JEEP Wrangler Expedition by Horcik Designs, on Flickr Introduction and Motivation I built it for the Kostky.org TROPHY, adventurous event and AFOL meeting that is inspired by Camel Trophy series, and was held by Kostky.org (CZ+SK LUG) at 5th August 2017 for the very first time. It was awesome day, and I hope that there will be more. Here is the the official video from the event. There were really great cars there. The car itself The car was built to fit the rules of the competition. That means reserve "fuel" in the car during whole race before refuelling, remote control (no wire connection between truck and controller, S-bricks allowed) and representative appearance. So I decieded to go with the force, and installed two XL motors for the drive, geared down in 3:5 ratio, and two L motors, each for the winch (1:8) and steering (mini LA). I also reduced gearing to the minimum, due to minimal energy-consumption. (I nearly did the whole race to single Li-Po BB) The car is not perfect, it is very heavy (approx. 1500g), so it does not allow to use CV joints in the front axle for smooth wheel rotation. They managed to withstand the race, but in the finish (before the big uphill from the first video) they were strongly damaged, mostly because of big steering angle. Well, I hope that the video will say enough, if you have any questions, feel free to ask me. :) Photos: JEEP Wrangler Expedition by Horcik Designs, on Flickr JEEP Wrangler Expedition by Horcik Designs, on Flickr JEEP Wrangler Expedition by Horcik Designs, on Flickr JEEP Wrangler Expedition by Horcik Designs, on Flickr JEEP Wrangler Expedition by Horcik Designs, on Flickr
- 43 replies
-
- 3rd party tires
- jeep
-
(and 3 more)
Tagged with:
-
Good day. This is a trial truck using 1 XL motor for drive, 1 M motor for steering and powered by BuWizz. The drive is powered through a worm gear to 8t gear, creating a powerful 1:8 reduction. It uses model team wheels , they don't have the best perfomance, but it is good enough. For the bodywork I was inspired by ГАЗ-66 (gaz-66), although it isn't an exact copy. Both doors can be opened, the seats and steering wheel are adjustable LDD model available here: download
-
hi everebody! Today i would like to show you my new 4x4 pickup truck. Specifications: dependent suspension portal axles 2 buggy motors for drive(geared 13,8 :1) 1 M motor for steering 107 mm wheels so,here it is and the video available here:
-
Hello! My latest MOC is a re-creation of unusual Jeep model. Jeep Mighty FC Concept -Weight: 2125g -2 XL motors for propulsion -Servo motor for steering -M motor for 2 speed gearbox -M motor for locking rear differential -M motor for winch -3 LEDs for front and rear lights -2 SBricks powered by one rechargeable battery box -Portal axles -Openable doors and tailgate -Shallow bed with fold-down sides -Detachable roof -Alternative tube doors The chassis is not realistic, but has decent offroad capability as heavy Lego model. My goal was to make a sturdy and powerful crawler having propulsion motors and gearbox on the center of its chassis. Which means the drivetrain contains two universal joints - weakest points - for transmitting the torque to front and rear live axles. To save U-joints from damaging, I adopted two stage reductions after differential on both axles. The gearbox is similar one to my previous FJ40 Crawler. I doubled the pair of 8T/24T gear for higher durability. High gear is three times faster than low gear. You may wonder why rear ball joint is connected lower than front. That is for avoiding body roll caused by high torque of hard-coupled XL motors. Seeing from the gearbox, the rear output rotates in opposite direction to the front one. So the front and rear axle are equally forced to rotate in opposite direction to each other. Thus the center chassis with heavy body does not easily roll left or right even when climbing steep incline. (...at least on paper. I admit the complete body is a little bit too heavy to prove the theory above.) Steering angle is good, but turning radius is not so good. Because of the lack of center differential, it cannot handle different rotating speed of front and rear axle in tight turning. On slippy surface, like in the video, it can be steered without any problem. Rear differential can be locked instantaneously. The role of 8T gear on top of red changeover part is to make a tiny gap between 16T clutch gear and driving ring in locked position. Thanks to the gap, 16T gear is not pushed against outer structure. That helps to decreasing the friction. Front winch is powered by M motor geared 9:1. I used two pairs of 8T/24T gear instead of worm gear. It is smoother and surprisingly powerful. The hook can be manually pulled out by switching the lever under right seat. The body looks a bit squarish comparing to the real Mighty FC. Maybe I could replicate trapezoidal shape of its cabin. But I thought angled pillars and roll cage would be wobbly. So I decided to build simple yet sturdy. Instead of realistic appearance, I managed to realize easily detachable roof and doors. Although the whole MOC is built for using Unimog tires, Claas tires also fit well. But the maximum articulation of axles would be smaller because bigger tires possibly touch the chassis and fenders. It would be necessary to limit suspension travel or slightly modify the chassis. I hope you will like it! I will make building instruction. But I have to finish the instruction of Pickup first.
-
This is a model I've been working on for a few months for the BuWizz gathering and now it's finally time to showcase it. The rules required a 1:10 scale model built after a real vehicle with a working gearbox, steering wheel and fake engine powered by a maximum of 2 BuWizz motors. I also managed to squeeze additional functions and features as following: 2x BuWizz drive motors 1x BuWizz 3.0 for control Working steering wheel actuated by a PU L motor 2 Speed motorized gearbox controlled by a PU m motor All Wheel Drive using planetary hubs Independent double wishbone suspension on all wheels with around 2 cm travel Working fake V12 coupled directly to the drive motors Detailed interiror with tilting rear seats to access the BuWizz Detailed exterior with opning doors, bonnet and tailgate Built out of around 2850 pieces 47 x 21 x 18 cm Weighs around 3 kg As usual with my representations of the real vehicles, I first started with sourcing, editing and importing a 3D reference into LDD. Here's how the digital model looks compared to the LEGO version: And here's the LEGO version without the reference: I hid the doors, bonnet and the tailgate in order to show the detailed interior: The driveline is very compact and efficient. Two BuWizz drive motors are placed right behind the rear seats and power the 2 speed gearbox and an (oversized) V12 engine directly. As with the real vehcile, suspension system is independent at all 4 corners. Steering system is actuated by the steering rack directly and geared up. Gearbox is activated by a PU M motor via a linear clutch and a wave selector: So that was the theory... After a few small fixes and corrections, this is how the finished model looks like in real life (oops, I lost my license plate): Rear view showing the spare tyre, detailed lights, guardrails and exhausts: Doors, bonnet and the tailgate can open up to reveal the massive V12 engine and front shock absorbers: Interior features an adjustable and working steering wheel, 4 fully detailed seats, console and a transmission tunnel. Rear seats can be tilted individually to access the BuWizz 3.0 for charging; Here's a view of the back with the opened tailgate. Thanks to the central motor placement, there's a lot of free space: One of the design goals was to protect all the gears and drive axles from dirt and to keep the bottom as flat as possible. I think I did very well, it's smooter than the real vehicle in that regard: And finally here's a video where among other details you can see how well it performed at the competiton: If you want to have an even more detailed look, you can download the LDD file here: https://bricksafe.com/files/Zblj/lamborgini-lm002/Lamborghini LM002.lxf To summarize I'm really proud of this model. It looks, performs and just feels good and hits all the right spots. One thing's for sure, I'm keeping this one assembled, as I trully believe it's one of the best models I ever designed.
- 13 replies
-
- lamborghini
- lm002
-
(and 7 more)
Tagged with:
-
Hello again, Back in March 2023 I started my YouTube channel with my Raid Buggy. Granted, it look somewhat crude and it was quite slow, but it was my first model with BuWizz motors and bricks so it has a special place my heart. Recently it was the 1 year anniversary of it, and I decided to make a remake of it to prove some how much my LEGO building skills have changed and to honor the original model and channel. So enough with the backstory, let's get to the details: Features 4 Wheel drive with a 2-speed gearbox steering with double steering racks Soft double-wishbone suspension Working gear stick Bodywork built to resemble the original model One of the things that I wanted to show with this model was that you don't necessarily need 4+ BuWizz motors in order to make a good fast off-roader. For this, I decided to make use of a 2-speed gearbox, which has a low gear with the same gearing as the Raid Buggy V1 and the high gear which is some 67% faster (6.2 km/h). The gearbox design was heavily based off @Zerobricks's excellent Simple Off Roader but modified to fit my needs. Another benefit of this is that it has a neutral gear, which is very useful for downhills. From then, I finished it off with the axles of my Monstermog and the chassis was done! from there, I had to build the bodywork, the part that I had been dreading the most For me the body was a very important part, as I wanted to make it reminiscent of the original yet it would have a more sporty look and a stronger construction. Just like the first model, it uses many connectors in @Attika's characteristic style. In the end, the bodywork suffered many changes but I consider them for the better, as it now has a more imposing look and a much more sturdy connection so it can be rolled over without having to fear of breaking it. And now a few more images: The model ended-up being a very good off-roader, with a somewhat high speed (6.2 km/h) yet with some torque left for harder off-road. I pretty much had no issues with it, except the front open differential which sometimes got in the way when off-roading in the low gear. It's otherwise a model more focused on high-speed on uneven terrain so I'm happy with it If you would like to build this model, you can download the .io file at rebrickable here. And as always, here's a YouTube video containing some off-road footage, functions showcase, and some nice Punk Rock music Feel free to post a comment about what are your thoughts about it, and see you in the next one!
-
Hey everyone, I stripped down my Dodge Demon MOC to the chassis and I want to modify it in a way that will make it look more rugged and potentially even have some RC components added! Do you all have any suggestions that you could please give to support the build?????? Here is a before and after of the chassis as of today: The Changes I have made are the following: - Improved central ground clearance - Components of the chassis have been removed to allow the fitment of bigger tyres - Larger Tires - Some reinforcement of the suspension struts and how they connect to the chassis I have a workbench post on rebrickable with a video! https://rebrickable.com/users/CrazyKreations/workbench/6109/ What should I add or change next?????
-
Good day/night/whatever everyone! I want to share with you a little experiment of mine that got a bit out of control. I hope, you remember set 8284 and its really unique looking b-model. At least I do. Furthermore, it is one of my favourite b-models and I really wanted to pay tribute to it. Obviuos thought was, of course, to make it RC with the new Control+ elements. After half an hour I got something that could drive and steer. I even tested it in the local park, but... something was off. It just wasn't enough. However good looking this buggy is, its transmission wasn't created with electromotors and speedy driving in mind. Wheels tended to fall off. Gears in diff broke at least once. And offroading capabilities were...em... on the small side of expectations. And I got an idea! I decided not just to motorize this buggy, but completely redesign, reimagine it from technical point of view, keeping exterior close enough to what it was before. You know, like these like-oldtimer-outside-but-modern-inside tribute cars which car companies sometimes make. Also I wanted to make transformation function more interesting and useful. So, I started on the blueprints... And here it is! All modern all new Dune Buggy! With familiar face which got a facelift. Literally. New version of transformation not just shortens the car, but lifts all front section up While cockpit raises up, special levers make sure that headlights between wheels always stay horizontal. And not only that. Another special lever in the rear section locks the differential using new orange shifter. This way buggy becomes most offroad. And now - to the video! (With the new intro btw)
-
Hi everyone, I have wanted to make an off-road truck for soo long and I just have enough time to build and design one. But I desperately need some expert opinions on how to design the front cabin for this vehicle. Does anyone have any ideas or designs you would like to share? ps I am looking for a design kinda like this:
- 2 replies
-
- scania
- expedition
- (and 5 more)