Search the Community

Showing results for tags 'Crawler'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Frontpage, Forum Information and General LEGO Discussion
    • Guest Section - PLEASE READ BEFORE YOU REGISTER!
    • Frontpage News
    • Forum Information and Help
    • General LEGO Discussion
    • The Embassy
  • Themes
    • LEGO Licensed
    • LEGO Star Wars
    • LEGO Historic Themes
    • LEGO Action and Adventure Themes
    • LEGO Pirates
    • LEGO Sci-Fi
    • LEGO Town
    • LEGO Train Tech
    • LEGO Technic and Model Team
    • LEGO Mindstorms and Robotics
    • LEGO Scale Modeling
    • LEGO Action Figures
    • Special LEGO Themes
  • Special Interests
    • Minifig Customisation Workshop
    • LEGO Digital Designer and other digital tools
    • Brick Flicks & Comics
    • LEGO Mafia and Role-Play Games
    • LEGO Media and Gaming
  • Eurobricks Community
    • Hello! My name is...
    • LEGO Events and User Groups
    • Buy, Sell, Trade and Finds
    • Community
    • Culture & Multimedia

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


What is favorite LEGO theme? (we need this info to prevent spam)


Which LEGO set did you recently purchase or build?


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Country


Special Tags 1


Special Tags 2


Special Tags 3


Special Tags 4


Special Tags 5


Special Tags 6


Country flag

Found 101 results

  1. Hi there, I've developed a very annoying habit in the last few years. I randomly build pickups and other 4x4's. Even bought a real one. Anyway, the latest one is quite a biggy (sizewise) thanks to the planetary hubs. I've found a trick build them into solid axles with a practical ground clearance. This trick is going to be conroversial here. But start up with the video instead: All pics to be found here: https://bricksafe.com/pages/Attika77/ultimate-pickup In the comments under the video, noble members of our community noted, that there are parts which could solve the 1/4 stud misery. (if you don't know what is that, off you go, and whatch the video to the end! ) One of these is the 14t gear from the old diffs: I've made the attempt, but due to that collar on the bottom (top on the pic) it is too wide and puts srain on the drivline, making it hard to turn it by hand, so it is off the table unfortunatelly. So I speak for myself when I say, cuting those axles worth it. Not a rare piece, and costs 1 cent on bricklink, but only because there is no smaller value in the currency itself. In return the design prooved itself very reliable. Another "weakness" of the axle is the inperfect geometry. The wheelhubs aren't completelly vertical. There is about 1 degree tilting inside on the top. /---\ Before overdramatising this atribute, think, if you've noticed it in the video? Apart from the axles, the rest of the truck is the product of those years I've mentioned above. The essence of it is a simplest possible drivetrain: And a steering solution refined for non-rack steering: (The render is made of an older version, hence the different connector) If you don't belive your eyes, yes I choose to use 4x2 beams to form steering arms. It looks savage, but it is doing the job very well, brings ackerman geometry in the game. It does not hold the wheels rock solid of course, but in practicality it isn't noticable on the field. I've got a rack steering solution as well, but that brings the servo down A, onto the front axle (I don't do that. Ever ) B, into the mid chassis, where I don't have room for that. So we keep that for another build. Also has a working steering wheel using the rear output from the servo. ame old bevel system I've been using in most of my builds. Check the 1st episode of the pickup saga for more on that. Suspension Solid axles on a 3 link setup. It is kinda made up design, slightly inspired by the rear suspension of my Isuzu Trooper. Changing the shocks, or their hinge point on the top, gives 3 different ride height and suspension stiffness. The black, soft springs give a softer, relaxed, lower stance to it, while the dark grey shocks (known from the set 8880) are lifting the truck to a practical maximum, but still can reach full articulation. Not in all situations good to have your truck up in the sky. Like the climbing in the video. With low shock setting it made 52 degrees, but 47 "only" on big wheels and lifted shocks. The center of gravity moves with your ground clearance. That's about it, the rest is smoke-screen, like the body, and fancy doors. Oh, here is a fun fact: When it came to the seats, I realised I have 2 adjustable seats salvaged from a lorry build from about 5 years ago. Luckily they fit perfect so just made a rear bench in the same style. A non adjustable lazy style. Please feel free to ask about it, or just say something about cutting axles. I hope you find something useful here to take home with you.
  2. Rocky I would like to present to you 'Rocky', a rock crawler buggy with a body tilting angle that averages the angles made by the front and rear axles. My shot at a 42099 B-model. When I saw the first images of 42099, I noticed that the amount the body tilts sideways, is mostly defined by the rear axles angle, because that axle's suspension is the hardest - it carries the battery/control unit - and it's not pendular. That got me thinking; wouldn't it be nice to make a setup in which the body tilting angle averages the angles made by the front and rear axles? Just like how a Mars Rover averages it's body angle between it's rocker bogies - with a differential - but now sideways, not lengthwise. That way it should be possible to mimic the character of 4-link suspension, which is often seen in rock crawlers. So that was my objective with this B-model and the nice thing is that this model contains exactly the parts needed to build something like that. Axle articulation Here is the setup that interconnects front and rear axles. Like in rocker bogie suspension, you should regard the body as the differential house. The body tilting angle is defined by the two axles that point sideways. I used 4 gears in the differential itself to minimize slack in the system. There is some rotational slack of course, but this is even further reduced by 1:3 given the 20:60 gear ratio with the turntables. Center of gravity Besides the differential, the center module also houses the battery/control unit, because that unit includes the tilting sensor and I wanted the tilting sensor to show the tilting angle of the body. I also wanted to keep the center of gravity low and centered. However, putting the unit in this central spot did cause issues later on... The battery/control unit - not depicted here - plays an essential role in form-locking the whole center module. The battery/control unit can be slided out sideways after removing a few pins and parts. Spring suspension Besides axle articulation, I of course also wanted to include actual spring suspension, so I attached two main suspension arms to the turntables, one for the front axles and one for the rear axles. I suspended the main suspension arms with springs placed between the turntables and suspension arms. The springs are mounted differently to the front and rear suspension arms, giving the car a little more lift in the back, which adds to a nice inclination, or rake angle, of the whole model. The whole model nicely sinks into the spring suspension under its own weight up to about 40% percent of the overall spring travel. Drivetrain I wanted to have the most simple drive train possible, so the motors are directly attached to the frames holding the differentials. This is a crawler and with the new portal hubs, there is no need for any up or down gearing. The motors add to the stiffness of the main suspension arms. I also wanted to have a track width that is two studs wider than the stock 42099 build. After some playing around I found out I could use the new CV-joints the other way around to make that possible. Steering For steering I wanted minimal slack and double sided steering rods like in the stock 42099. I limited the steering angle to make sure the maximum angle the CV-joints make, does not cause any damage. I noticed the CV-joints start wobbling when the angle they make is too big. The steering rack assembly - as well as its back side counterpart - use a trick to minimize unintended movement (slack): The assemblies are 3 studs deep and incorporate 3L axles with end-stop. The end-stops are sticking out of the assemblies and make them slightly deeper than 3 studs. For this to work the end-stops need to slide along a smooth surface. This trick makes for a very nice fit with little play and still allows the assemblies to move very smoothly. Ground clearance To increase ground clearance I used a double wishbone setup, not suspended, to take advantage of the extra lift provided by the inclined wishbones. The rear wishbones are inclined more than the front wishbones, because there the CV-joints don't need to deal with the steering angle. At this stage I also added a set of minimalistic fenders ;-). Bodywork Finally, bodywork. This was the most challenging part for me. It needed to be removable, to provide access to the battery/control unit and I wanted it to live up to my foolproof standards. The whole model can be lifted by the roof or by the A(?)-pillars. At this stage I practically used all the pins that came with the set, so I had to do a lot of backtracking to get some pins available. I ended up using all pins, including the ones that came as spare parts. Interior RC don't have interior . When I wanted to test drive with a first bodywork attempt, I found out the hard way that I could not reach the on/off button of the battery/control unit. I had not taken that into account. Eventually I found a solution in making the roof openable, as if it were a hood, just by releasing two pins. The red 10L axle in the back can then be used to turn the controller on. After opening the roof, it can be removed easily, after which the sides of the body can be removed separately to access the battery/control unit. All together this has been a great experience. Especially the limited and pre-defined set of parts made it a real challenge. It forced me to revisit all constructions over and over again, and leave in only what is essential, without making concessions to my self-imposed building standards. I ended up using 828 of the 958 parts.
  3. Good people of Eurobricks, let me give you my first take on the planetary hubs: Please excuse me for the lenght of the video, it's meant to show the developement stage by stage. I had big expectations towards the new hubs, since they've been announced. I realised, these hubs will solve the problem of the stress on drivetrains, yet will raise a new challenge. Due to the increased torque on the wheels, the frame (chassis) and the bracing of the suspension will be the new weak link. A wanted to have a finalized rig to the date of the release of the hubs. The backbone of the design came from a five years old chassis concept, it was a non motorized chassis: To mimic the geometry of the new hub, I've used the old ones with some extension, so it can be easily swapped, when time comes: The concept of the chassis came together quite well, thanks to using techniques well practiced in my early years. But there was still a long time till the release of the new hubs. Driven by curiosity, I've planted two PF XL motors in the middle of the chassis, making them drive two axles each. One for the front axles, one for the rear ones. No additional gearing has been added, the motors were connected straight to the differentials. Of course it had to be tested, hat's the part around one minute into the video: https://youtu.be/PGQpUrOS-NQ?t=59 Came with a surprisingly satisfying result, despite the usage of the old cv's and hubs, yet it was understandably far from being a "crawler" it meant to be. Also at this point I was short of claas tyres, so I've used some similar size rc tyres on the front 4. Got the tyres eventually, still a lot of time till the hubs coming though. As the final design was gonna use 4 buggy motors, time came to make the change: Same principals, like with the XL motors: No gearing added (slow output used), 2 motors drive the front, other 2 for the rear axles. Now feeding that much buggy motors would require 4 buwizzes. Or one well sized rc lipo that can comfortably supply 2 sbricks. 4 buwizzes cost about 400-450 pounds, while the lipo comes for 30 pounds. Any question? At this stage (still no new hubs) it was an obvious, yet pretty crazy idea to hit the tarmac. So I did. That's what you see at 2:16 in the video: https://youtu.be/PGQpUrOS-NQ?t=136 I had a lot of trouble that day with the bluetooth connection, brought a head on crash int o a container. It was heart-, but no plastic breaking. Finally the hubs came by the post and the picture got full. I've also planted another servo for steering (2 in total now) Indoor durability test at 3:27 https://youtu.be/PGQpUrOS-NQ?t=207 Climbing test (60 degrees) at 4:18 https://youtu.be/PGQpUrOS-NQ?t=257 Hereby I apologize for the dark enviroment at this recording Peek on the suspension at 3:12 https://youtu.be/PGQpUrOS-NQ?t=191 Lego should not be used outdoors... ahm, okay... Outdoor test from 4:55 in the video. https://youtu.be/PGQpUrOS-NQ?t=295 I came to the verdict, that the new hubs worth their money. In a usage that abusive, you see in the video the hub-cv connection definitelly require some lubrication. I've been using silicone oil and no downside appeared so far. Here is the difference it makes: That's it so far, a little spoiler at the end of the video. Hope it's gonna catch some expert eyes...
  4. I present to you my Lego Technic Chilli Crawler! This is a complete makeover and overall improvement from my previous Carrot Crawler: http://www.eurobrick...howtopic=112037 Yes, I know. This is the second crawler that I named after a vegetable; expect more! Features: - Triangulated 4-link live axle suspension using 4 soft, black shocks. - 4x4 with one PF XL motor mounted parallel* to each of the two axles. A final gear ratio of 1:5.001, yes this may seem slow, but the enormous Super Swamper tires make up for it. - Speaking of that, 4 RC4WD Super Swamper tires. No, they are not Lego, I got them from a nearby hobby shop. - One L-motor for steering in the front axle, geared down via worm gear to 8 tooth gear, then a 12 tooth gear to a 40 tooth gear. The 40 tooth gear drives another 12 tooth gear that moves a 13L gear rack. - Portal hubs for all four wheels. Standard Lego Unimog for the rear axle for rigidity; custom triangular plate portal hubs on front axle for a steering pivot point closer to the center of the tire. - Good articulation, about ~55-60 degrees. - Controlled with an SBrick. - Powered by a Lego rechargeable LiPo battery. - Green Chilli Stem** * The mounting of the drive motors parallel to the axles was a must for this crawler. By doing so, I have not only eliminated gear slippage as there are no perpendicular gears, but there is also a ton more ground clearance in both the front and rear axle. The rear axle especially as the motor is actually on TOP of the axle. Crazy, huh? ** Makes the crawler look so much cooler. Challenges: - As with all 4-link suspension setups, the mounting and placement of both the links and the shock absorbers proved to be a rather annoying, tedious part of the process. I have, however, managed to make a VERY rigid triangulated setup where the shocks are not bent or warped in any way. - The mounting of the two lower links on the front axle was also difficult as there was virtually nowhere I could mount these links onto. I was able to (somehow) securely mount both the lower links and the shocks of the front axle onto 7L and 9L beams on either side of the motor. - Mounting the motors parallel to the axles proved to be hard, but actually somewhat straightforward when it came to the rear axle. I had been so used to having drive axles perpendicular to the axle like on my previous crawler. The mounting of the front drive motor was difficult in the fact that its power is transmitted through various gears and the motor itself is connected to the axle by two plate beams and a pin or two. Although the front drive motor is still not completely rigid, I have had no problems with gear slippage whatsoever in either axle. Some pictures: And finally, here is the youtube video: I welcome any suggestions or comments you may have. I will, however, say in advance that I DO NOT plan on making a body for this crawler as I designed it for performance purposes mostly, a Lego "comp-crawler" as you may call it. Thanks, pt
  5. Hi, ___ EDIT __________________________________________________________________ __________________________________________________________________________ HERE ARE INSTRUCTIONS FOR CURRENT VERSION: (description later in this topic) https://rebrickable.com/mocs/MOC-28281/Horcikdesigns/offroader-for-overland-adventure/#bi ___________________________________________________________________________ ___________________________________________________________________________ This is my latest attempt at building offroad car. JEEP Wrangler Expedition by Horcik Designs, on Flickr Introduction and Motivation I built it for the Kostky.org TROPHY, adventurous event and AFOL meeting that is inspired by Camel Trophy series, and was held by Kostky.org (CZ+SK LUG) at 5th August 2017 for the very first time. It was awesome day, and I hope that there will be more. Here is the the official video from the event. There were really great cars there. The car itself The car was built to fit the rules of the competition. That means reserve "fuel" in the car during whole race before refuelling, remote control (no wire connection between truck and controller, S-bricks allowed) and representative appearance. So I decieded to go with the force, and installed two XL motors for the drive, geared down in 3:5 ratio, and two L motors, each for the winch (1:8) and steering (mini LA). I also reduced gearing to the minimum, due to minimal energy-consumption. (I nearly did the whole race to single Li-Po BB) The car is not perfect, it is very heavy (approx. 1500g), so it does not allow to use CV joints in the front axle for smooth wheel rotation. They managed to withstand the race, but in the finish (before the big uphill from the first video) they were strongly damaged, mostly because of big steering angle. Well, I hope that the video will say enough, if you have any questions, feel free to ask me. :) Photos: JEEP Wrangler Expedition by Horcik Designs, on Flickr JEEP Wrangler Expedition by Horcik Designs, on Flickr JEEP Wrangler Expedition by Horcik Designs, on Flickr JEEP Wrangler Expedition by Horcik Designs, on Flickr JEEP Wrangler Expedition by Horcik Designs, on Flickr
  6. Hi guys, I’ve been following the forum for some years not, but I’ve been mostly a “lurker in the dark”. But, after 2.5 years designing and building when I had some spare time, I can finally share my 1:20 crawler crane MOC with you. For now it has somewhere around 40.000-60.000 parts (don’t know exactly how many). I’ve tried to build it as close as possible to a real crane in terms of assembly and functionality, with the usual constrains that you have with building out of Lego at this size and scale. As a disclaimer (and as a direct apology to Lego purists), the slewing bearing is not lego, but a cross roller bearing. The drive of the bearing is Lego, using the ¼ gear racks from the 42055 BWE. Took me about 6 monts to find a bearing that fits in size with the internal gearing of the gear racks, so that the driving axles still fit trough. Also, if you look really close, there were some occasions where I got out the Dremel for some adjusting (mainly panels), as I didn’t want to sacrifice strength, or design. Again, sorry to the purists. The crane is powere by 4 BuWizz, one in each central counterweight (between the crawlers), and one in each superstructure counterweights. I love the fact that you can still operate the BuWizz while it’s charging, so I have a power bank battery next to each BuWizz. Like this you get hours and hours of play time even with a large heavy model like this. The drive is as follows: - Each crawler is powered by 4 PF XL Motors (and one BuWizz per crawler) geared down 240:1. The motors don’t drive the ends of the crawler, but 8 sets of 2 gears underneath each of the crawler chassis. Due to weight reasons I used metal axles from Eezo’s Brick Machine Shop from the US. -Slewing is done again by 4 PF XL Motors which sit in the base of the superstructure. - Each winch is driven by a PF L motor. They were powered by 2 PF L motors, but because the winches are worm-driven I had some issues with them not running synchronous and overloading the motors. The winches can be individually taken out from the superstructure for maintenance and use 1mm wax rope. Structurally the main building technique for the crawlers, undercarriage and superstructure is an array of 5x7 technic frames. I’ll come back on another post with some pics of the various building techniques and technical details. Maybe I’ll also do a more detailed video on this sometime soon. The crane is not finished yet. I still need to build the superlift tray and telescope, which will be EV3 controlled so that it self-adjusts, and sadly I need to rebuild all the boom. Until a main boom length of 4.5m everything is ok, but with more than that it starts to bend too much. In the video below I’ve build 4m of boom, because it was pretty windy when we shot the video. The goal would be 7m someday. I want to keep the boom in the main boom+short fixed jib configuration. A luffing jib would be easier to lift (most large Lego cranes that I saw are built in a luffing jib configurations), but as I work in wind turbine assembly, I want to build the boom configuration that we use mostly. Here some pictures from the assembled crane: https://www.flickr.com/photos/164584645@N03/ And here a video about the crane (without wanting to advertise for the channel) As mentioned before, I’ll follow-up with some more pics from the building phase and building techniques. I hope you guys like the crane.
  7. Speed-build video: https://www.youtube.com/watch?v=bvelE1MXuaA
  8. Hey Everyone! Here is the successor to my Lego Technic Chili Crawler, the Cactus Crawler It took about half of a year of design and revision to reach its current state, of which I am proud of. THE VIDEO: youtube Features: - 3 L-Motors for drive (two in the rear axle, one in the front) - M-Motor and a small linear actuator for front steering - Rigid, triangulated 4-link suspension for the front axle, with large, soft, black shock absorbers - Extremely rigid 2-link rear suspension with ball-joint pivot point on top of the axle, similar to that found in the RC "Mantis" crawler - 100% Lego-legal custom curved rear links that, with how the main cab is shaped, provide exceptional ground clearance towards the rear of the crawler, allowing it to climb up relatively large vertical structures such as street curbs - Very minimal, light bodywork - BuWizz for extra power and SBrick for a great, custom control scheme Note: By the time I finished designing the cab and it's battery enclosure, BuWuzz had not yet come out with the update for their iOS app that allows a single joystick/slider to control multiple outputs, so I was forced to use an SBrick with the BuWizz, providing the extra power from the BuWizz, but with the ease-of-use and great custom control profiles of the SBrick. When used with the SBrick, the BuWizz does in fact still provide more power than the standard Lego 8878 LiPo battery box. - RC4WD 1.9" Krypton scale tires - Two green pieces so that I can call it the Cactus Crawler ;) LXF hopefully coming soon, the tires can easily be found with a quick google search of their name. YES, I know, there is no body. This is meant for performance, meaning I made the cab as small, light, and rigid as possible. I will be able to reply intermittently throughout the day. I figured I'd put this up now anyway! pt
  9. So here's the idea: seeing as all large and complex Technic submissions have failed on LEGO Ideas so far, I set out to create a very small and simple, yet fully functional 4x4 crawler. This is the result, which can be considered the 9398 set on a budget ;) as it offers pretty much the same functionality in a considerably smaller package. If you're willing to give this project a shot at becoming a set (a Technic Ideas set would be nice, at long last), please support it here: https://ideas.lego.com/projects/ba4cebf3-1f80-497d-9ecb-faee2dbc1df3 Photos and description: http://sariel.pl/2018/11/4x4-jeep-wrangler-trailcat/
  10. Hello All! It is winter time, so I am bit more busy on Legoing. After seeing, that @Didumos69 started his 4x4 buggy project, I looked into a bit deeper the Ultra 4 racing, and the rigs been driven in this extreme events. Finally the video, what I linked to his topic, triggered the work on another MOC: the Ultra 4 buggy. Here is another video to see the interesting bits of independent suspension system on this beast: Still, I might end up with IFS (independent front suspension) and solid axle with torque bar for the rear, but the body is heavily inspired by the Lasernut buggy. Parameters: 2x L motors 1x servo motor AAA battery box - in order to be replace ability with BuWizz in case IR control Let's look at into the progress a bit, maybe it is interesting to read. I started on 28. november with LDD model. To set the proportions, and the body ideas, I usually place the essential parts free in space first. Check the real inspiration thing and the very first sketch: After that I added the electronic parts, to check the necessary minimum space. (Unfortunately Stud.io has corrupt models, so some cover parts of the motors are just not present.) At this stage, I built the front axle, to see how can I integrate the steering. The answer is: massive fail. So back to drawing table, I deleted the 5x7 frame, and started to figure out, how to connect the needed fixation points for swingarms, servo. Due to this, the model gets more complex than I thought, but buildability is always first! I recommend to check meanwhile IRL building too, or at least stop by and thinking about how to add the related parts. I was hopeing for a simple MOC, but I ended up already a pretty complex assembly, so I made each step with double check. Later on, I will try to add groups in LDD to represent the buildability order too. So far the front module with steering and IFS is ready, the middle module is almost done, I am wondering about interchangable solid axle or independent solution for the rear - not sure yet. Also the color is to be decided yet, as the springs type as well (soft or hard). I think if soft ones will be OK, than I go for white body, as it presents the "rollcage" better. In case the yellow hard shock absorbers will be needed, of course the only choice is: full MEAN black body. This picture shows the advantage of the white body, and also a comparison for tyre types: 3740 on the left, 45982 on the right, both on 56908 wheels. So far 407 parts, and I guess it is about 70-75% ready. I need to figure out how to fix the roof, and create a solid, but easily disconnectable rear module. Necessary parts are ordered, so real build pics might come in couple weeks first. And how is the road presence? I guess it will be pretty much like a punch in the face. p.s.: Yet another WIP, I hope for long winter nights, to finish at least some of my unfinished projects...
  11. Hello guys! At last I can represent to all of you my latest MOC. It's a Lego Technic Liebherr LR 11000 Crawler Crane. I tried to build a copy of a famous Liebherr-brand crawler crane. If to be honest it was my dream to build a human-high technic crane. This model is approx two meters high. It has five independent winches! Real crane has six, but two of them goes to one hook, what was not necessary to represent in lego version. Except string crane is build of 100% Lego. As a counterweight I used three big battery boxes in the superstructure and three ones in the additional counterweight carriage. Below I will list crane's functions. RC: 1,2) Chassis drive and steering - one L motor for each track. 3) Superstructure rotation 4) Operator's cabin uplifting via small linear actuator 5) Main boom winch 6) Luffing Jib winch - winch is located on the main boom like in the original model 7) First hook winch 8) Second hook winch - winch is located on the main boom like in the original model Manual: 1) Derrick boom winch - needs only when assembling/disassembling crane 2) Addiction counterweight extensioin - need to balance crane under heavy loads 3) Addiction counterweight up/low - need to balance crane under heavy loads or without a load 4) Addiction counterweight steering - need to steer wheels in the counterweight carriage when superstructure rotating and need to make wheels parallel to move crane forward or backward 5) Chassis uplifting - chassis have installed four small linear actuators which can lift the chassis under the ground to put on tracks like in the real Liebherr!! As TLG doesn't have any pulleys of 0.5 stud wide and with the pin hole in the center and 3D parts are too expensive I decided to drill the original ones. Firstly I used 4 mm drill to make a round hole instead of an axle, after 4,5 mm and finished with the 5 mm drill. No any part was broke. And this time I already has video to show you: And a couple of photos. https://bricksafe.com/pages/Aleh/liebherr_lr_11000 Hope you will like it. Feel free to ask any questions. Also very appreciate critics. But for sure my wife definitely will not stand another crane To start building i was inspired by the set 42042 - I love it too moch!
  12. Hi to all fans of Lego! Today I want to share with you my new work - Rock Rod Rock Rod - it's the crawler, on the construction of which I was inspired by the fierce custom projects from HAUK Designs. Especially, where, no matter how on the crawler to run a fresh RC DC chequered flag STT PRO rubber wheels and BuWizz. At the output was a relatively light on the portal bridges crawler. At the heart of the model is also the philosophy of placing motors on bridges, to reduce the center of gravity and minimize weight and inertia of the body. Technical characteristics of the model: Weight (together with a technic-figure) - 817 g. Number of parts - 617 pcs. Steering - Servo motor Movement - two L motors Power / Control - BuWizz Even the "sofa" trial allows us to understand that additions such as non-standard tires and BuWizz significantly expand the scope of use and possibilities of radio controlled Lego models. It remains to wait until the snow comes down, to ride Rock Rod on the rocks. But you can do this before me, by building the Rock Rod yourself by free video instruction. I plan to test the model in the spring on a severe off-road. I will be very glad to hear from you any advice or wish for the completion of both the technical component of the model and its appearance. Ahead is still half a year :)
  13. Hi there! I'm selling set, located in Belarus. 5571 - used, 99% complete. Some minor parts lost. With manual building instruction. Truck has been standing on the shelf for the last 10-12 years. Ready to ship immediately. Photo by request. Ready for offers.
  14. Hello! My latest MOC is a re-creation of unusual Jeep model. Jeep Mighty FC Concept -Weight: 2125g -2 XL motors for propulsion -Servo motor for steering -M motor for 2 speed gearbox -M motor for locking rear differential -M motor for winch -3 LEDs for front and rear lights -2 SBricks powered by one rechargeable battery box -Portal axles -Openable doors and tailgate -Shallow bed with fold-down sides -Detachable roof -Alternative tube doors The chassis is not realistic, but has decent offroad capability as heavy Lego model. My goal was to make a sturdy and powerful crawler having propulsion motors and gearbox on the center of its chassis. Which means the drivetrain contains two universal joints - weakest points - for transmitting the torque to front and rear live axles. To save U-joints from damaging, I adopted two stage reductions after differential on both axles. The gearbox is similar one to my previous FJ40 Crawler. I doubled the pair of 8T/24T gear for higher durability. High gear is three times faster than low gear. You may wonder why rear ball joint is connected lower than front. That is for avoiding body roll caused by high torque of hard-coupled XL motors. Seeing from the gearbox, the rear output rotates in opposite direction to the front one. So the front and rear axle are equally forced to rotate in opposite direction to each other. Thus the center chassis with heavy body does not easily roll left or right even when climbing steep incline. (...at least on paper. I admit the complete body is a little bit too heavy to prove the theory above.) Steering angle is good, but turning radius is not so good. Because of the lack of center differential, it cannot handle different rotating speed of front and rear axle in tight turning. On slippy surface, like in the video, it can be steered without any problem. Rear differential can be locked instantaneously. The role of 8T gear on top of red changeover part is to make a tiny gap between 16T clutch gear and driving ring in locked position. Thanks to the gap, 16T gear is not pushed against outer structure. That helps to decreasing the friction. Front winch is powered by M motor geared 9:1. I used two pairs of 8T/24T gear instead of worm gear. It is smoother and surprisingly powerful. The hook can be manually pulled out by switching the lever under right seat. The body looks a bit squarish comparing to the real Mighty FC. Maybe I could replicate trapezoidal shape of its cabin. But I thought angled pillars and roll cage would be wobbly. So I decided to build simple yet sturdy. Instead of realistic appearance, I managed to realize easily detachable roof and doors. Although the whole MOC is built for using Unimog tires, Claas tires also fit well. But the maximum articulation of axles would be smaller because bigger tires possibly touch the chassis and fenders. It would be necessary to limit suspension travel or slightly modify the chassis. I hope you will like it! I will make building instruction. But I have to finish the instruction of Pickup first.
  15. My latest MOC, the 4x4 crawler! This was modeled off some 1960/70 pickups, hence it’s boxy look. The goal was to have a powerful drive and a winch, with a release like in 42069 so it can be pulled by hand then engaged. I am happy to say that these goals have been achieved. In the video, the crawler has no trouble driving on ice and frozen grass, and I also made a course out of books to test the crawler indoors. When driving outside, the temperature was -2C. The crawler is powered by 2 L motors, steering by a servo motor as well as engine and winch controlled by M motors. Video: Pictures: Thank you so much for watching and reading! Looking forward to your comments! BbBT
  16. Hey everyone, This MOC is being built for 2 reasons: 1, to celebrate 3 milestones- Canada's 150th anniversary, Technic's 40th anniversary, and me hitting 1000 subscribers on Youtube. In fact, a comment suggested I do this. The second reason is to cure the errors that my 2 previous crawlers had: -weak axles (very weak in fact) -low climbing power -messy building -inefficient steering (used an M motor) -no additional RC functions So here's where I'm at right now: Above is the motor housing. I'm going with 2 L motors for the drive because they have good speed at a sufficient torque. That is the gear housing. Frames are abundant. Now the whole front axle. You can see that it is compact and yet very, very durable. The rear axle. And the two together. This crawler is being built for max performance but awesome looks. So I want to (but may not) do a Tacoma body: Update tomorrow, thanks for reading! BrickbyBrickTechnic
  17. nerdsforprez

    Gheo-rescue

    Okay.... I am already super-backed up on projects and cannot take on another....but someone absolutely needs to make this machine! in LEGO!
  18. I am getting close to the end of this long term build and it's time to share some pictures and a bit of the story. Even before I had finished putting together 10231, I decided I wanted a Crawler to go with it. Being a Technic fan it had to at least drive around and lift the launch platform and shuttle. Those two basic goals spawned a project that has lasted a little over 2 years so far. Some ideas have stuck around since their inception, others were a bit optimistic (like building a peristaltic pump and hoping I could find a way to control the pneumatics hydraulically). February this year marked the 50th anniversary of when the two crawlers went into service, so recently there has been extra motivation to finish. The base equipment; - 16x M-motors (drive) - 4x L-motors (pneumatic jacking and leveling) - 4x IR Receivers (V1 as the V2s do not like driving multiple m-motors on a single channel) - 4x NXT servo motors (steering) - 4x RCX rotation sensors (measuring jacking level between truck and chassis) - 2x NXT bricks (one master and one slave. The master communicates with the Android Tablet and coordinates itself with the slave. Programmed in LeJOS) - 1x PF IR-Link sensor (link between master NXT and all PF motors) - 2x PF Battery boxes (with thermal overload removed) - 1x Android Tablet Future add-ons - Accelerometer (automatically detect the crawler is on a gradient and adjust the leveling to suit) Bricksafe folder is here: http://www.bricksafe.com/pages/OzShan/Crawler Firstly, a couple of my favorite reference pictures; The build itself started with the trucks, thinking that the pneumatics and LAs would dictate the scale. First proof of concept - build a coupling to give height, pitch, roll and yaw to the truck. The pneumatics need to be on their own gimbals too. The reinforced 2x2 rounds slide and rotate in the 4x4 macaroni's. It is on the limit of what will hold together without glue, but it does hold. The two 1x2 technic bricks at the base of the 2x2 column are helped a little by a string (not pictured) which runs up through the 2x2 rounds with the axle. Initial prototype of the drivetrain. I would have liked a higher ratio but there was just no room at this scale. When the gearbox was married with the truck chassis I had to juggle positions, so you will see in later pics the crown gears are facing in not out Best laid plans.... Marry studded and studless they said. It will be easy they said... Showing what will eventually be the steering between chassis and truck. The guide tube and pneumatic cylinders are all on gimbals with the pneumatics coupled together. The average height is preserved during any tilting. With prototypes sorted, it's time to bricklink some parts and quieten down the colour scheme! (thank you 42030 for providing 5L thin liftarms with axle hole in LBG color) You can see the relationship between "guide tube" and cylinders here. The pneumatic system was overhauled too many times to remember but this is what it arrived at. It is all controlled by the direction of the motor. Running forwards drives the pump. When running backwards, the lobes operate the pneumatic valves in series, letting small amounts of air escape each rotation. This lowers the chassis in a slow and controlled manner. The motor can be turned on or off and run in either direction at any time due to the valve timing. Early attempts with PF Servo and NXT servo just couldn't park the valve reliably and after a few operations I would hear a slow leak. I have been trying to keep up with the LDD but it's hard to stay motivated when I know I'm just going to have to suck it up and move over to LDraw if I want to include all the motors, pneumatics and LAs Works so far; (I'll make the files available if anybody would like them). I found LDD essential in the early days to plan ahead and simply find parts, but later on the build overtook it. Original 'box' pump. 1x PF XL motor, 4x 6L pumps running at 90 deg to each other. Very smooth but bulky. Flatter attempt in the same vein. The truck itself. The final design for the height control modules. I hope you enjoy the build so far. More pictures to come of chassis, steering, leveling and interior details. I'll leave it to others to decide what 'theme' it belongs to .
  19. Hi everybody! Thats my new 4x4 rock crawler. So,here it is Specifications: -4 link suspension -portal axles -rc 108 mm tires -3s li-fe battrey -2 buggy motors -1 sbrick I hope you like it Let's see it in action!
  20. filsawgood

    Crawler 4x4

    How about that little cross between mud and go on the rocks? Crawler 4x4 always ready for it! Still would! Its wheels are shod with tires RC Rock Crusher X/T 1.9, coupled with portal axles and two motors running by SBrick and LiPo battery box - we have an off-roader with excellent maneuverability, suspension geometry and a low center of gravity due to the unsprung axles. Crawler 4x4 built under the rules of the forthcoming Off-road trial competition in Moscow, at the same time. I tried to build the chassis in such a way as to achieve maximum throughput and maximum flexibility - namely, so this chassis can set the wheels of virtually any size from 62 to 108 mm. The body of the model removable. This allows the chassis to this every body, even though the truck, even an SUV. Get more photos on my blog of flickr
  21. I decided to open a seperate topic for this beast. Inspired by Letsbuild's idea to crawlify a Lego set, i decided to go full crazy and try to upgrade the biggest, heaviest and most orange set to date, Porsche 911 GT3 RS. First thing I built was the front axle, which uses the H frame as a placeholder for bewel gear, so there it no possible way of them to slip: Those with sharp eyes may notice the gears are not aligned, this was done in LDD development mode, more info soon The drive than goes directly to portal hubs with 1:3 gear ratio, giving the model 1:5 gear ratio on each wheel. Front axle also has a servo motor which steers the wheels and powers the Porsche's original steering wheel via a ball joint Rear axle powers the Porsche's gearbox via a couple of clutch gears in order to allow different motor speeds when steering or skid steering - Yes, this 4 kilogram heavy model can even skid steer thanks to its independent motor control. Here is the end result As with the original set, I kept the rear axle 2 studs wider than the front: For suspension I used 4 hard springs, which are hald compressed thanks to the model's immense weight. Due to the porsche's wide chassis springs are quite far apart, so the flex angle is not really big, but on the other hand that makes the model much more stable. Performance wise the crawler works very good, despite its massive weight, so far I had no broke U joints or gears and it has enough torque to skid its wheels on hard surface. Expect more pictures soon and a video soon.
  22. Lego Technic – Liebherr LR624 Litronic Crawler Loader Features A medium-class Crawler Loader work machine produced by Liebherr. İf 2008 Product design award. Generation 4 Liebherr crawler loaders provide exceptional han dling performance even in diffi cult terrain. Fast work cycles, an optimum bucket capacity and outstanding machine handling under load give them optimum operating properties. - Full Function Remote Controlled. Activate the double remote-controlled Power Functions motors for powerful, simultaneous driving and digging action – just like the real machine! -Includes the following Lego® Power Functions components: 2 large motor, 2 medium motor, a battery box, 2 remote controls and 2 infrared receivers -High Detail Kokpit. Operator Seat, Control Joysticks, Control Panel, Hand Brake, Fire extinguisher and Hot Coffee. -High Detail Exterior, Doors that can be opened and closed. To remove the battery box, the back hood can be easily opened. Illuminations, Grids,Stickers. -Total 1434 Parts -All Original Lego® Technic style design.
  23. Presenting the 8258-B Crawler, Designed and built as an entry for the 'Crawlify your set' contest [AMS1] I'm a huge fan of b-models in general, but the 8258-B has always been one of my favourites due to great looks and an easy to modify. Or so I thought... In the end, I reckon about 85% of the chassis has been custom built. There are two L motors situated just below the cabin. One powers the front axle, one powers the rear. Both axles have differentials because, being independently powered, loss of traction is a lot less likely and it saves my poor pieces from becoming mangled. Because the 8258-B is rather small (read: narrow) I had a lot of trouble designing a front axle that could house a servo motor without limiting the range of suspension travel. Eventually I gave up and ended up modifying this axle to accommodate a differential (well deserved credit to the amazing @Madoca 1977). However with that said, I have made sure the bodywork stays almost 100% true to the original. The only alteration I had to made was to the rear wheelarches to make room for the balloon tyres: Original wheelarch Modified wheelarch: Also, the front winch kept scraping on obstacles I was trying to climb over so I switched this out for a bullbar, however the two are easily interchangeable. Anyways, here's a video of this thing in action. As always, please let me know what you think. Whether it's praise, criticism or telling me off for building ANOTHER red and black model (I have other colours, I swear!!), I'd love to hear it. More images can be found in this bricksafe folder. Enjoy =)
  24. Hello all, I have a few questions regarding the use of 2 L-motors for powering a crawler. I have done some research and have not been able to find many MOCs that use L-motors for drive, does anyone have any advice on using them instead of 2 XL motors for drive. I know the torque output will be less with the L-motors but the overall speed will be quicker. If geared properly couldn't a L-motor be able to closely match an XL motor, but spin faster? Netting me more of a buggy type of crawler instead of a pure crawler? Also if I were to use L-motors I can keep the overall size of my axles smaller. One of the downsides is the power draw from the 2 L-motors will be too much for a Lipo battery setup, correct? I'm building some custom axles in LDD and cannot make up my mind which way I should go with my PF, XL drive or L drive motors. I have designs for both size motors, any advice or experience would be welcome, thank you!