Search the Community

Showing results for tags 'motorized'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Frontpage, Forum Information and General LEGO Discussion
    • Guest Section - PLEASE READ BEFORE YOU REGISTER!
    • Frontpage News
    • Forum Information and Help
    • General LEGO Discussion
    • The Embassy
  • Themes
    • LEGO Licensed
    • LEGO Star Wars
    • LEGO Historic Themes
    • LEGO Action and Adventure Themes
    • LEGO Pirates
    • LEGO Sci-Fi
    • LEGO Town
    • LEGO Train Tech
    • LEGO Technic, Mindstorms & Model Team
    • LEGO Scale Modeling
    • LEGO Action Figures
    • Special LEGO Themes
  • Special Interests
    • Minifig Customisation Workshop
    • LEGO Digital Designer and other digital tools
    • Brick Flicks & Comics
    • LEGO Mafia and Role-Play Games
    • LEGO Media and Gaming
  • Eurobricks Community
    • Hello! My name is...
    • LEGO Events and User Groups
    • Buy, Sell, Trade and Finds
    • Community
    • Culture & Multimedia

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


What is favorite LEGO theme? (we need this info to prevent spam)


Which LEGO set did you recently purchase or build?


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Country


Special Tags 1


Special Tags 2


Special Tags 3


Special Tags 4


Special Tags 5


Special Tags 6


Country flag

Found 62 results

  1. Jan-'17 Now, building instruction file (PDF) is available at Rebrickable linked below http://www.rebrickable.com/mocs/Modoro/motorized-42056-porsche-911-gt3-rs-version-11 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Hi.. everyone! This my 2nd posting here, introducing my own renovation(or remodeling) of TECHNIC 42056 PORSCHE 911 GT3 RS. Among the newly released 2016 Lego models, "TECHNIC 42056 PORSCHE 911 GT3 RS" received the best attention before release. In addition to its nice and detailed appearance, now I attempt to review the process of blowing features including RC driving and 4-speed gearbox shifting, and LED lights as well. The video above shows the process of remodeling TECHNIC 42056 PORSCHE 911 GT3 RS and a driving test in the following order. The process of remodeling each part of PORSCHE chassis Driving and steering test of the remodeled PORSCHE chassis The process of binding the renovated chassis to the PORSCHE body Field driving test The main target of this RC remodeling is just a chassis (or power-train) that is composed of front/rear axis, power transmission and steering units. The following figure compares the before and after appearance of the renovated PORSCHE chassis. <Before> <After> The changes and features of the renovated PORSCHE chassis are as follows Mounted drive motors (L-motor x 4) Mounted a steering motor (S-motor x 1) Modified gear shifting method not using the paddle shift remodeling of the 4-speed sequential gearbox for enhanced durability and power transmission efficiency Mounted PF battery (optionally, two batteries) Mounted two SBRICKs for the remote control capability While including all of the above modifications, it maintains the design and major features of the original 42056 model. (rear fake engine room, Hand of God, glove box, toolbox under the hood etc.) This review is divided into a total of 9 sections, and the following videos illustrate the building progress of each section, respectively. part 1: chassis frame remodeling In this section, the main contents of RC motorizing 42056 PORSCHE chassis is largely divided into three sub-parts and will be described as follows . 1) reinforcement of chassis regidity A dictionary meaning of chassis frame is defined as "the frame plus the "running gear" like engine, transmission, drive shaft, differential, and suspension" In the original 42056 model implementing the real PORSCHE 911 GT3 RS in LEGO model, a chassis is composed to support the body, transmissions, front and rear axis, engine etc. By the way, LEGO designers did not consider the RC driving from the stage of planning the TECHNIC 42056 model. Thus the chassis regidity, weakened by adding driving & steering motors, gear-shifting motors and battery boxes, cannot maintain the body shape of its own secure and inhibits the stable driving performance. In order to reinforce the chassis regidity that is more weakened by removing liftarms to mount 4 driving L-motors under the gear-box, 42056 chassis core is newly configured using a total of thress TECHNIC 5x11 liftarms. 2) provision of driving motor mounting space 4 driving L-motors are mounted under the gear box between the driver and front passenger. 3) provision of gear-shifting axle mounting space In the original 42056 model, The transmission and drive shaft axis are designed in the form perpendicular to each other. According to this design, gear shifting can be done accurately, smoothly and sequentially from 1st speed to 4th speed. However in the driving test progress, it turned out that thress 24-toothed bevel gears in driving pathways can not deliver high torque & power to the rear axle and differential gears. Thus, to remove three bevel gears in the pathway of the remodeled 42056 chassis, gear shifting axle is heightened by 3L and driving shaft is connected right to the 4-speed transmissions. part 2: 4-speed sequential gearbox remodeling part 3: control units for the RC gear shifting part 4: driving motors mounting part 5: dashboard remodeling part 6: front/rear axis remodeling part 7: rear engine room remodeling part 8: assembly process of the renovated PORSCHE chassis part 9: binding the renovated chassis to the body of PORSCHE These are all I prepared for the review of the motorized 42056 PORSCHE model. Thanks for reading & watching (-;
  2. The classic 1967 Ford Eleanor GT500 was a fearsome beast in its day, with a 428 cubic inch big block rippling the pavement courtesy of an astounding 355 horsepower. It's also the car made famous as "Eleanor," Steve McQueen's awesome ride in the original 1974 movie Gone In Sixty Seconds. With so much heritage to this classic car, I knew this build had to reflect that hardcore stance and styling everyone grew to love. 1967 Eleanor Mustang- let’s drive by lachlan cameron, on Flickr In an attempt to stay true to the mechanics and design, I began with the classic live axle rear suspension and an inboard suspension style in the front with Ackerman steering and torsion bar. 1967 Eleanor Mustang- Chrome engine block, gold pistons, red chrome wheels - by lachlan cameron, on Flickr I threw my new red chrome rims on the car just for a quick photo with lots of bling :) 1967 Eleanor Mustang by lachlan cameron, on Flickr The car also sports front and rear headlights, motorized hood and trunk, 2 XL motors for drive, 1 servo motor for steering, 2 Buwizz batteries in the trunk, a chrome V8 engine block with gold pistons, working fan and blower, snap back doors. 1967 Eleanor Mustang by lachlan cameron, on Flickr I did try to follow the shape of the car closely, as you can see in the overlay below: 1967 Eleanor Mustang by lachlan cameron, on Flickr After so many new challenges on this car I'm fairly satisfied with the outcome. So sit back, grab a cuppa and check the video! And as always - a huge thanks to my brother @DugaldIC , @KD123 & @technic_addict for their support throughout this build.
  3. Hello all! There's a thread called "parts wear" which deals with such things as discoloration of bricks over time and tire deformation, but that's not quite what I was looking for. This one, as the title suggests, is geared towards motorized technic creations... Many people who build complex technic things and love their motors know that ABS plastic on plastic doesn't make for the best bearing in the world, often resulting in extensive deformation and/or failure of parts, or the creation of "dust" from a once-useful axle under load. Fast mechanisms, even under little to no load, also like to disintegrate very quickly... What building techniques (or even slightly non-vanilla tricks) do others use to keep their models going, or at least keep the parts usable once the model comes apart? Happy Building! I got some wheel hubs (left) a few weeks ago because they look like they can handle heavy vehicles much better than standard axle-in-pinhole hub designs (right). I don't know if there's any real advantage to using them, but it seems like the greater surface area plus a drop of oil or something would make them far better at holding up in the long run versus just an axle in a hole
  4. If you remember those little clockwork robots, which used to be toys and are now prized collection articles, than you will surely recognize my representation! I've been working on this for some time now and I'm proud to say that this robot walks as well as the real thing! It uses two pullback motors, a couple cogs (gears) and 623 LEGO elements to achieve (I only hope you agree ) both good looks and great functionality. The mechanism with the incorporated motors is made to fit exactly into the case and the case comes off all in one piece (I like my modularity). The mechanism for the legs is the most simple thing ever but making it was as complicated as any of my larger MOCs, because balance played such a vital role in all of it. You can still see it wobble as it walks (I find the wobble quite indearing though ) and a lot of work went into keeping it from falling when it does. I like to think this is my best work yet, so I hope you like it just as much enjoy!!! My Flickr gallery
  5. Hello everyone! we want to share with you our new weekly video on the channel! It is a fully motorized steampunk inspired moc. To build it, it took about 70,000 pieces. The builder is the friend of Dario Tiezzi. Hope you like it!! https://www.youtube.com/channel/UCB2Ks_69diJsB1LcMlqONvA?sub_confirmation=1
  6. Hello to everyone. I'd like to present a new project. I'm building an Underground Mining Loader. The idea came to me two years ago when Lego released the set Mine Loader (42049). By the time, I was expecting this to be the flagship model (1H) of that year, but it turned out to be a medium-size model. So I built my own. I took parts mainly from my Volvo Loader (42030) and built a version with a much lower profile. The result was ugly but functional. It's being on a corner getting dust. A couple of weeks ago I took this Moc apart and I'm rebuilding it from scratch. I'm not showing the "original" because it's really ugly. I hope I can make a decent model, something between good-looking and functional. Although most of the ideas come from the previous Moc, the "improved version" it's proving to be a difficult job. I think it would take a couple of weeks to finish the improved version. Here're some pictures from the first part. I'm happy with the results. I think 1/5 of the job is done. Disclaimer: I'm not trying to replicate a specific machine, but I have taken inspiration from the Caterpillar portfolio Thank you for your time. ****Pictures of the final model**** Lateral access to motor. For maintenance purposes, I guess. Hardly noticeable IR receivers ;) Easy access to motor. Cabin with chair and control panel. No floor. Easy access to battery and cables. You can also accommodate the rechargeable battery.
  7. Count Sepulchure

    A turkey that loved turkey

    Hello, everyone! The turkey body piece. What does one use it for? I came up with a character using only 4 pieces. Mr. Reykut is pleased to meet you! He is already greasy in anticipation of what's to come! And he sure loves turkey! "Follow me, for we shall head for the kitchen!!" "Welcome to my place, do make yourselves comfortable." "The star of today's show - the turkey!!" "Man am I going to enjoy this... I added some extra grease today!" "Please don't mind me, housekeeping ain't doing itself, you know..." "I always say that the floor should be as shiny as a freshly-roasted turkey..." "About time to turn it over. I can smell the juicy meat" "Let's grill this turkey for good!!!!!" "Yeeeaaaahhh, baby!!" And now - for some proper action!! "Nothing beats a large greasy turkey! Gravy is for wimps, enjoy the meat!!" "Shall we go for some more?" Thank you for your attention! x)
  8. Count Sepulchure

    [9v MOC] CMF vig: March Harriet

    Hello everyone! What kind of ideas pop into your head when you hear of a "cmf 8x8 vignette contest"? Mind you, I eventually thought of Micromotor, 9V, Fiber Optics and a matching figure capable of delivering the goods (hint: it did). Here's what came out of that idea... Just a dance club, folks! Nothing to see here, carry on... It is fairly tall for a vig, but it certainly works give the space restrictions. The dim lights were a pain to film in my setting, although I tried my best. The show must go on, no excuses allowed! And no regrets for that matter. Welcome the Catwoman from the Batman Movie franchise! Double the fun!! Some technical shots. The old 9V system is invaluable for how smoothly it integrates into Lego System. Fitting the fiber optics element into 8x8 was one hell of a task. At times I felt like a car thief on a job... The floor, oh, the floor! Don't even ask. Some bits and pieces. The pole absolutely had to be chrome - a choice afterwards regretted... I dare you to find a sound, functional and purist solution of proper length if you don't believe me. A rubber wheel was the only option of attaching the piece as far as my knowledge of pieces goes. ...And the heat goes on... Now that's a club I wouldn't at all mind visiting... Hope you had a great time here, be sure to visit soon! And something tells me you might just do that... Thanks for your attention! Let me know if you had as much fun as I did! x)
  9. The origins of the idea: The core of this model consists of three rings which can independently rotate around three perpendicular axes. These pivoted rings are called gimbals. Gimbals have been used in a wide variety of engineering applications since ancient times till modern days. Gimbal suspension is used to provide stability to objects inside unstable environment, e.g. compasses on ships and gyroscopes on planes. Furthermore, the simplicity and effectiveness of gimbals often attracted artists' attention. In science fiction and fantasy, gimbals have been used to represent complex contraptions capable of creating new physical effects and even manipulating the very fabric of reality. Some of the examples include the machine from the 1997 movie Contact, the gravity drive from the movie Event Horizon, mass relays from the video game series Mass Effect and even the Time-Turner from the movie Harry Potter and the Prisoner of Azkaban. LEGO implementation: The idea of this model is to set gimbals in motion. Complex transmission allows each of the three motors to independently operate one of the three rings. Therefore the contraption is very easy to control. The rings and the frame are perfectly rigid and secure. The design of the model is intentionally minimalistic so that it could be used as a part of larger models. Video demonstration: Simple version: There is also a simplified version of the model with only two rotating rings and one motor. It may be also actuated by hand. Video demonstration and speed test of this version: Afterword: If you like this idea, please support my project on LEGO Ideas and share it with your friends! Thank you for your attention!
  10. genISD

    Motorizing 7715 with 810

    Hello This is my first post here. I got 7715 from my childhood and just recently by a luck I got complete 810 motorizatioon set which can be used with 7715, according to instruction sheet. However I have no idea how to put battery box from 810. It's almost 7 studs wide (6 studs plus half a stud on every side - battery box thicker cover. I think I must build additinal train car from this battery box but grey is not so good looking. Have you ever tried using this approach?
  11. I'm happy to present to you my first modular building. I have put it on Ideas too, so if you like it, please support: https://ideas.lego.com/projects/106103. edit: It is now available on Rebrickable Some time ago my daughter got this Duplo set from her aunt: http://brickset.com/...ative-Ice-Cream That got me thinking I could use one of these cones for my own purposes, especially since my little one was very interested in throwing bricks across the room, instead of proper play (or maybe that was proper play ;) ). Anyway I borrowed four bricks from her (I honestly intend to give those back to her) and thought it would be nice to make a big advert out of this ice cream and make it rotate. Such an Ice Cream Parlor should have nice clientele drawn by this big sign of what's inside :) So power functions was a must. But since I was to integrate PF info a modular, why not go further and add some lights too? When I was young (long time ago...) I always liked things that moved and had lights :P so you can call it late compensation :P Later on I will present it module by module, but if you want to have a quick look at it in action, here's a video: Ok, so let's start with a view of all the modules separately: And now let's talk about the ground floor: As you can see, on the right there is the ice cream parlor with seating available inside and at the back of the building. You can buy ice cream, lemonade, donuts and coffee. The staff is taken from the Ice Cream Machine set :) I'm happy with the bench - it gave me some headache, but I wanted to have something distinctive. The lamp is also different to typical one, but it's nothing special. On the left there is an entrance to the owner's apartment. There is also a small storage room for bike. The top of it is removable for easier access, but you can get the bike in and out through the door (but it's tricky). Ok, now - the heart of the modular - the Power Functions module: All electronic components are here. That is: 1 Rechargeable battery 2 switches 3 sets of PF lights (so 6 sources of lights total) 1 M motor Of course apart from that there are also all the technic components to make it work. The motor is running the Duplo brick with a 1:9 reduction. The lights are provided for the ice cream parlor (4 of them), entrance to the staircase (1) and the apartment (1 for the table lamp seen above). My idea was to be able to control lights and motor separately, that's why I have 2 switches here. Look closely at the picture above. There are two holes for technic axles above. The one on the left is for access to the switch controlling the motor (advert). The hole on the right allows access to the switch controlling all the lights. Those go on/off simultaneously. You can't have just part of them on. That would require even more switches and there is simply no room for that. It's crammed inside already. Now, have a look at the bottom of this module where all the lights can be seen and the front of this module, which allows access to the rechargeable battery in case you need to recharge it (power cord access). Through the holes in the front section you can turn the battery on/off and change the voltage too. Now, the last two modules are the roof and the apartment of the owner. It's not much room inside - the advert required quite some space already, but it's cosy :P As you have seen already this apartment get light from the lamp on the table, which is actually part of the Power Functions module. Yes, I know the TV is kind of useless on that wall, but... hey, he wanted a TV so I gave him one :P So, how do you operate this thing? With a KEY :) and last, but not least - two pictures of it with lights on, and ambient lights off: Full gallery is available on my Bicksafe: http://www.bricksafe...ce_Cream_Parlor I hope you enjoyed this little presentation. Please consider support on Ideas: https://ideas.lego.com/projects/106103
  12. Hi! I was very impressed by new 42054 set so I’ve decided to motorize it. The chassis was completely replaced but the body is the same like in the official set. There are four motorized functions in my model: AWD, front and rear steering and cab rotation. Also I’ve added electric PTO for outer RC attachments. I plan to create new rig in the near future. Let’s see my MOD in action: A few photos: New transmission: BB switch as in original set: Electric PTO: Thanks for watching! I hope you like it :)
  13. HI, This is AT-TE With Motorized & Lights,hope you like.
  14. tkel86

    Swing Ride

    A Swing Ride, one of the most popular ride in the world. It use chains for the chairs like the real one. Inside the central support there is a xl motor that rotate and incline the top circular support. Then the centrifugal force do the rest of the movements. You can see it working here:
  15. Hi! Two years ago, I did a motorizable cherry picker for a contest on the french forum TechLUG. So, I used the comments I had, and I decided to : - Use a more little scale - Better proportions - I did a better cab. In the first MOC, it was too heavy because of the battery box inside it. - The first cherry picker was motorizable by a M motor ; this one is only motorized, more simple and efficient. To summararise : Better proportions (I hope ^^) Only motorized I use inverted gearboxes for : - Outriggers - Arm - Turn table And the manual functions : - The steering (of course) - Extension of the arm So, here's the result: The simplest function is the steering. But there is the L motor over it. So, I used three 16t gears to turn the wheels directly by their axle of rotation. And now, the gearbox. It's an inverted gearbox : the "out gears" turn in the opposite sense. So, when you invert the position of the driving ring, you invert the rotation of a function. Here are screenshots: The outriggers can up the truck: the wheels don't touch the floor. To finish, the arm. It has a triple deformable quadrilateral. I needed so much time to do it, but it's nice to see in action. And the video :
  16. Hello everyone. This is my very first motorized lego vehicle. I'm wondering if somebody could help me to improve all the mechanisms. The vehicle has front steering (this technique requires less space between wheels and mudguards). It's powered by two motors (PF L and PF Servo). I would like to know if there is a way to implement a differential gear. I'm also looking for the best steering technique. I would appreciate any ideas.
  17. Hello, I would like to motorized my set - Lego Technic 42037 vers. B PF RC or A. Which parts I need and/or which briks I need to motorized my set? Is there any video to show (step by step) how to do it? Thanks for any help
  18. M_slug357

    L-motor Frames

    Hello fellow builders! I felt that it was finally time to share with you all something that I've been working on/ playing with for a while now: My L-Motor Frame. L-Motor Block Types by Nick Jackson, on Flickr The concept for this project was to create a stable platform on which (primarily) steam engines could be produced with less motor& cable obstructions. L-Motor Block Types by Nick Jackson, on Flickr This would then allow the engine's body to be built relatively free of electrical components, or crammed with them in the case of tank engines. L-Motor Block Variants by Nick Jackson, on Flickr I think that the most interesting part of the frame is the fact that it is easily modifiable, and can essentially go from 2 to 7 axles! At the time of writing this however, I've only dared to go up to 4 axles for a related project. L-Motor Block Variants (2) by Nick Jackson, on Flickr Hopefully these frames and their different gear ratios will inspire you to make a steam engine! Although, there are a great many European engines that are not steam, but employ connecting rods for their drive wheels. L-Frame with Medium-Large wheels by Nick Jackson, on Flickr Lastly, here are some alternative wheel sizes that you may be interested in. These are made possible by the work of BigBen Bricks and @Shupp. The smallest feasible size would be the Medium-Large drivers by Shupp. These would need a bit of reworking from a standard L-Frame in order to clear switches and such. New Wheels!!! (2) by Nick Jackson, on Flickr Here, a set of XL wheels from BigBen fit nicely on a standard frame. L-Frame with XXL wheels by Nick Jackson, on Flickr And, by upgrading to the longer frame size, you could even accommodate 6 of Shupp's XXL wheels! Hopefully this post will benefit everyone, but moreso people who've had a difficult time getting into trains, and especially steam! Please, let me know your thoughts, and definitely share your ideas for a potential future build that might benefit from this design! Oh, and here's the link to the files: https://drive.google.com/open?id=0B9xAgBdzDImZaFFsM2lGVkdmcEk Thanks for reading, ~M_Slug357~
  19. This is my model of the Meter Maid Cart from Zootopia. Features: Full independent suspension; Easy access to battery box. Remotely controlled Power Functions: Driving (Large motor); Steering (Servo motor) + synchronized steering wheel; 4-speed sequential gearbox (just for fun!) switched with a Servo motor. Windscreen wiper (Medium motor). Manually controlled Power Functions: Headlights (manual switch). Manual functions: Rotating flash lights. If you like this model, please support it on LEGO Ideas! Also, if you like Zootopia, see my models of Judy Hopps and Nick Wilde! Or even support them on LEGO Ideas!
  20. Hi Guys, been a while! Just thought I would drop a quick line letting anyone know that instructions are available for my GTHO, only 4.5 years after I first started building! hahaha. I have received a lot of enquirers about the instructions and its those people that keep me at it, through to completion. Please check out Rebrickable. :) Now I can finally start on something new! YAY ;P
  21. I finally have good pictures of the demonstrator model for my take on a cheap no-modification-required switch track motor. Have a look! The key that makes this work is that the servo acts on a slider, which pushes on the little spring-loaded switch point piece, rather than forcing the lever mechanism back and forth. As such, it takes very little force to change the switch from open to closed and vice versa. I'm using two of the 1x1x1 corner panels to trap the servo horn so that it pushes the slider back and forth, while a 2x2 corner tile pushes the point piece backwards and forwards. The actual switch lever needs to be in the 'open' position to allow the point piece to move back and forth properly; otherwise, the switch will stay closed even when the servo releases the point piece. I'm using an Arduino Uno, but you could use any Arduino or compatible clone as long as you get the pins hooked up right. It's a lucky coincidence that the servo is the size it is; two of the 1x2x3 panels form a nice enclosure that keeps it from moving about too much. It's important to get the older style that don't have the reinforcing ridges on the edges, as otherwise it won't fit. I used a small piece of paper folded on itself a couple of times to keep the servo wedged in tightly. I imagine you could use some of those 1x2 bricks with the vertical groove in them to help hide the servo cabling, but I didn't bother since this is only a demonstrator. Here's a better view of the setup without the track in the way. My servos came with a pack of three differently-shaped horns to put on them - I'm using the shortest one available to me (mine was 19.5mm long with six small holes in it and was the only one with one 'arm' on it). I also have not permanently attached it with the screws that also came in the package, mainly for the purposes of testing. Lastly, here's a picture of the support structure I built up to keep everything in place. I also made an LDD file of the structure as well as the slider mechanism and servo holder so that you can build your own! http://bricksafe.com/files/Phoxtane/digital-model-files/servoswitchtrack.lxf The hard part of this built is not the mechanism, but setting up the servo as well as the Arduino controller. If anyone is interested, I can do a more in-depth post on how these servos work and how to use them, but the basics go something like this: Attach the servo to the Arduino using the diagram on this page: https://www.arduino.cc/en/Tutorial/Sweep Test your servo to make sure it's working using the example code on that page (the servo should slowly move back and forth between its endpoints) Center the servo at 90 degrees - http://www.allbot.eu/build/allbot-arduino/centering-a-servo/ - this puts the servo at a known position for use in our mechanism Place the small one-arm servo horn onto the servo spline so that it's pointing across the servo body, not away from it. This allows the servo to reach the little pocket we've built and actuate the slider. This is the tricky part; you have to play around with the Arduino code to calibrate your servo for its switch track. These servos are mass-produced as cheaply as possible, so the actual physical position of the horn at the 0 and 180 degree endpoints will vary somewhat from unit to unit. For my servo, the two positions the servo should move to for a closed and an open switch are about 83 degrees and 113 degrees, respectively. The corner tile should barely touch the point piece when open, and should keep the point piece tight against the outside track piece without the servo struggling or forcing itself out of position. I made some minor improvements to this code for my demonstrator - the servo doesn't sweep between positions, but jumps between them, so it's faster to actuate. I also have the Arduino disconnecting the servo in between movements so it doesn't 'hum' while waiting to move to the next position. General improvements to this model would include building the mechanism out of DBG and black for the servo holder, as well as tidying up the wiring to the servo. The servo horns stand out quite a bit color-wise, but since they're nylon, they could easily be dyed black to match the servo housing, and the silver-colored screws that come with the servo horns could be touched up with some paint or nail polish to turn them black as well. The only downside to this mechanism is that you can't run a train backwards through the straight part of the switch when it's closed, since the point piece can't move out of the way. Since this is already being controlled by a microcontroller, it wouldn't be difficult at all to add some sort of sensor that would open the switch when a train is approaching it from the wrong side. As for overall cost, beyond the price for the pieces needed to build this barebones mechanism (I had all of the pieces in my collection): I bought a ten-pack of these servos for $2 apiece, and if you don't already have one, a small Arduino starter kit can be found online for $25. The Arduino Uno has six analog pins, so it can potentially control up to six servos at once. If you're starting out from scratch, the total cost for six motorized switches would end up being around $37 - which is much cheaper than the ~$125 it would take to build this out of genuine Lego parts (one battery box, six M-motors, three IR receivers, three IR remotes), and it doesn't take any PF channels.
  22. Inspired by Lego's Ferrari 599 and Enzo models, I've created something 'beefier' . Main characteristics: Measurements - 50 cm (L), 25 cm (W) and 15 cm (H). Weighs 2.5 kg. All wheel drive (AWD) with 3 open differentials. Full independent suspension. Steering - KPI, Caster, Progressive Camber, sharp steering up to 40 degrees. Towerpro MG995 Servo. Powered by a brushless 4370KV motor at 9 volts . For fun and laughter .
  23. Hi.. everyone.. I'm a new member subscribed last week. So this is my 1st posting here. Now I want to introduce my own renovation (or remodeling) of TECHNIC 42039 racing car that is capable of 4WD and 2 or 4 speed transmission features and so on... With a desperate that I need to go finish the TECNIC 42039 racing car renovation (or remodeling) going on for several months, I start a review about the result of my 42039 renovation version 3.0. First, through the video below we will introduce an overview of 42039 renovation version 3.0. The next additional video introduces the previous version 2.2 with features of 2WD and 2-speed transmission etc. The main feature included in renovation version 3.0 are listed below. -. RC engine room hatch opening feature of the original 42039 model -. Front axle renovation for 4wheel-driving (4WD) -. The reinforcement of power transmission path to the rear wheel axis -. Optional 2 or 4-speed transmission function In the following content introduces a modification information for each part. 2 or 4-speed transmission feature For the purpose of extended range, a four-speed asynchronous sequential shift gearbox option is added, 2-speed synchronous transmission as well. (With a minimum of effort adapted in accordance with the object, 2-speed vs. 4-speed selective transmission) In particular, our 4-speed sequential gearbox is inspired by the 4-speed compact transmission that is designed by SARIEL and that of TECHNIC 42056 PORSCHE 911 GT3 RS original model. In the video below, it shows the assembly of 4-speed sequential gearbox. (Sorry, the assembly of 2-speed gearbox is not ready yet) The pros ans cons of 2-speed synchronous and 4-speed asynchrosous transmissions described herein are appreciated as follows Division 2-speed synchronous 4-speed asynchronous High torque drive suitable inadequate Shift range narrow wide-range Shifting function stability low hight In conclusion, Choose 2-speed synchronous transmission, if you seek to improve the driving force Choose 4-speed asynchronous transmission, if you pursue a variety of speed and a technical completeness The challenge is 3 or 4 speed synchronous transmission upgrade. 42039 chassis renovated Sometimes with rear-wheel axis of the original 42039 models, transmission gears are impatient for a large force drastic departure or steep slopes in the progress of strong torque being transmitted to the rear wheel through a transmission shaft. So as to compensate for this problem in the renovated version, the rear-wheel axis structure has changed as the following video. The renovated 4WD front axis is at the heart of the renovated version 3.0. In other words, it describes the steering and front wheel drive shaft modifications as possible at the same time. The under-body of the renovated version compared to that of the original 42039 model is modified as follows -. Fake engine is replaced by 4-speed gearbox -. S- motor mounted under the hood -. Installations of the renovated chassis etc. In the video below you can see the renovated chassis production process using four L-motors. The final assembly process By combining each part-specific modifications result described above, the following video of the last shows the final assembly process of 4WD 42039 racecar bodywork. By finishing the renovation of RC motorized 4WD racing car, I could try another renovation with 42056 PORSCHE 911... I hope to introduce the renovated version of 42056 in the near future.. Thanks to you all reading this review to the end... Bye
  24. Hi everyone, Here's my modification of Lego Technic 42024 Container Truck set. In addition to original functions (steering, outriggers and container lifting) it has: - 6x4 driving, - 90° tilting of the driver's cabin, - Working & tilting steering wheel, - Fake V8 engine (working), - Led lights, and is completely remote controlled. I used: - 1 L-motor for 6x4 driving - 1 Servo motor for steering - 1 M-motor for outriggers - 1 M-motor for lifting the container - 1 M-motor for tilting the cabin - 1 rechargeable battery box - 3 IR receivers - 1 set of led lights - 1 x 20 cm extension cable Bricksafe: http://bricksafe.com/pages/Chilekesh/42024-rc (*.lxf file can be found here). Rebrickable: http://rebrickable.com/mocs/Chilekesh/42024-container-truck-motorized-rc Any suggestions on improvements are very welcome. Cheers and happy building!
  25. Hi everyone, Here's my modification of 8416, fully motorized and remote controlled. An additional function is the working & tilting steering wheel. The PF elements used are: - 1 M-motor for driving - 1 Servo motor for steering - 1 M-motor for lifting - 1 M-motor for tilting the lifting assembly. - 2 IR receivers - 1 Rechargeable battery box Rebrickable: http://rebrickable.com/mocs/Chilekesh/8416-fork-lift-motorized-rc Bricksafe: http://bricksafe.com/pages/Chilekesh/8416-motorized (*.lxf file can be downloaded here). Any suggestions on improvements are very welcome. Happy building!