Search the Community

Showing results for tags 'akiyuki'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Frontpage, Forum Information and General LEGO Discussion
    • New Member Section - PLEASE READ BEFORE STARTING!
    • Frontpage News
    • Forum Information and Help
    • General LEGO Discussion
  • Themes
    • LEGO Licensed
    • LEGO Star Wars
    • LEGO Historic Themes
    • LEGO Action and Adventure Themes
    • LEGO Pirates
    • LEGO Sci-Fi
    • LEGO Town
    • LEGO Train Tech
    • LEGO Technic, Mindstorms, Model Team and Scale Modeling
    • LEGO Action Figures
    • Special LEGO Themes
  • Special Interests
    • The Military Section
    • Minifig Customisation Workshop
    • Digital LEGO: Tools, Techniques, and Projects
    • Brick Flicks & Comics
    • LEGO Mafia and Role-Play Games
    • LEGO Media and Gaming
  • Eurobricks Community
    • Hello! My name is...
    • LEGO Events and User Groups
    • Buy, Sell, Trade and Finds
    • Community
    • Culture & Multimedia

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start



What is favorite LEGO theme? (we need this info to prevent spam)

Which LEGO set did you recently purchase or build?



Website URL








Special Tags 1

Special Tags 2

Special Tags 3

Special Tags 4

Special Tags 5

Special Tags 6

Country flag

Found 17 results

  1. A new topic to attempt to centralize information, improvements and discussions about the most iconic Great Ball Contraption made by Kawaguchi Akiyuki, The Ball Factory GBC Version 0, July 2008 by Superbird28. Akiyuki stated himself he was inspired by Superbird28 when designing and building the Ball Factory. Why can be clearly seen in this video dating back to the pre-digital age. Thanks @Jonas for noticing. Version 1, June 2011: with color sorter as input: Version 2, november 2011: picker for 2 balls and optimized for higher speeds (1.3 balls/s) Februari 2016, @Blakbird and @TheRebricker reverse engineered the Ball Factory over a period of two years and posted the below: Video instructions by The Rebricker PDF instructions by Blakbird 4428 parts MOC Review by Blakbird LEGO Digital Designer file by @TheMagician The Akiyuki Project topic by Blakbird April 2019: Ball Factory New Style GBC compliant, reliable and easy to move: A big thank you to Blakbird and TheRebricker for all their hard work! This reverse engineered version adds the option to circle balls within the ball factory, here my build from December 2016 Many have build the Ball factory in various colors and versions. Below an overview of suggested and quoted improvements with pictures out of the 77 pages in The Akiyuki Project topic, up to you what changes you want to make. Feel free to add your builds, improvements or questions about The Ball Factory to this topic. ___________________________________________________ Spiral Lift platform improvement by Jonas: used a SNOT technique to get a stronger platform. It allowed me to remove the gap and to fix the superstructure to the studs. Moreover, I used the remaining stud of the 30414 brick to stabilize the tower column by a vertical 1x6 tile. Now, each column is fixed from 3 sides and the tower is really stable. It will survive even an accidental kick.  And, I added another (third) black pin to strengthen the vertical support (shown on page 186 in Blakbird's manual) ___________________________________________________ Ball picker improvement by Jonas: I have also made a small improvement of the ball picker - the part that picks a pair of balls and puts them into a bucket. It happened quite often that the right ball dropped before it reached the bucket. When I analyzed the construction of the picker, I noticed that the rightmost axle is significantly looser than the other ones. While the other two rear axles are attached to the rail construction, this one is not and cannot be attached. In my version, I fastened this axle to the rest of the assembly by replacing a 3L liftarm by an L-shape liftarm (not necessarily in yellow color). -> Since that time I have not observed any earlier drop. ___________________________________________________ Back pivot point by @Ankoku I have used the 5.5L Axel with Stop just like the original. You could probably get away with a 5L, but the connection may be hanging off slightly. The main piston rod has been changed from 20L to 19L in complete length. I used the "Technic, Plate 1 x 5 with Smooth Ends, 4 Studs and Center Axle Hole" which Akiyuki used, just because I did have them kicking around spare. A 6L Plate would be fine. I have gone with a 11L and 7L lift arm. Akiyuki went for a 15L and 3L, thus far, I haven't seen any reason for using those particular lengths. One bonus with using the plate to connect the two lift arms, is that the connection is rock solid, so you no longer have the wobble of the altered version. As you can see on the right, the connect on the end of the 8L axel is flipped. In the ReBricker instruction video, he has it this way round and then adds a later correction to show it the other way around. This way round is the way it is in the Akiyuki video and it is required to make this pivot point work. ___________________________________________________ Bucket shift timing mechanism by Ankoku Here is the piston itself. I have changed it to the original format. This is obviously the left one of the two in the video, as you can tell by the connector end, but other than that, the two pistons are identical. The crucial change is Technic Beam 1x3 Thin between the two year 1x5 Technic Beam Thick. The reverse engineered solution doesn't have that. That provided the extra travel I was looking for. As you can see, the connections for the yellow beam on the right aren't as pretty and you lose the symmetry. That said, the new motion is as smooth as butter, which is immensely pleasing in comparison to trying to make the other method work. ___________________________________________________ Bob improvements by Ankoku The initial changes to the height didn't do much to improve smoothness and I found that the paddle seemed to now be an issue. It was also the source of quite a bit of friction. As you can see in the image, the paddle is 3 deep in total. You can tell this from the light grey 3L axel. The bottom part of the paddle is a Technic Beam 3 x 3 L-Shape Thin. Using that piece makes a lot of sense and seems far better than using 3x Technic Beam 1 x 3 Thin, where the 1st of those completes the light grey 3L axel length and the other two are at 90° to create the L shape. Unsurprisingly, this approach is smoother as there is less friction. ___________________________________________________ Bucket unloader by Ankoku So I was playing with it and it didn't seem to work very well and certainly didn't reflect the motion I was seeing in the Akiyuki video. Having watched the video more times than I care to remember, I noticed that the lift motion seemed to be in a single motion, not two. I also noticed that the lift arm used seemed shorter than the one in the instructions. So in the end, I changed it from a Technic Beam 1 x 5 Thin with Axle Holes on Ends, to a Technic Beam 1 x 4 Thin with Axle Holes on Ends, using yellow ones to reflect those in the video. This seemed to work well and reflect the video. Then I checked on Bricklink and it seems that Technic Beam 1 x 5 Thin with Axle Holes on Ends don't come in Yellow. So yeah, that bit needs to be a 4L not a 5L. ___________________________________________________ Back slider by Ankoku, There is definitely these two beams there, length unknown. Below I am using 2x Technic Brick 1 x 15. You can see both in the Akiyuki video, although only 1 at any one time. This also explains why the bottom Technic Axle and Pin Connector Perpendicular is attached differently to the two above it. For the forward back motion you see in the video, this is not possible with the use of a pin instead of an axle. The axle you can see here, allows full motion in one direction, but slightly limited in the other, which is exactly what you see in the video. It is only possible to put the top Technic Brick 1 x 15 in there if you remove the plates from the bottom of the slider. If you look in the Akiyuki video, those plates are not there. I still don't know how either piston connects to the slider exactly. I am still hoping to hear back on that. That said, these two beams seem to be correct and answers a few questions. ___________________________________________________ Bucket slide by Ankoku The area that the buckets slide along for the shifter is actually offset by half a stud in the Akiyuki version. This is not reflected in the instructions. This answers why the shifter itself is half a stud over the sliding area at maximum backwards reach. I always thought the shifter didn't do full travel, but it does, it is just the sliding area which is misplaced. Here you can see how the sliding shelf is connected to the conveyor with a Technic Brick 1 x 2 [2 Holes]  Anyway, changed the length of the slider my one, so that is now correct. Removed the plate from the bucket stopper just before the slider, so that is now working correctly and is the same as the video. Bob now actually aligns correctly with the buckets at maximum reach. ___________________________________________________ Shifter changes by Ankoku This removes the need for any universal joints and thus removes the variable speed of the conveyor. ___________________________________________________ Shifter changes by Ankoku It seems Akiyuki has reworked the pivot mechanism and beam length. This new approach removes any potential bend in what would have been an 8L axle. The new approach requires a shorter piston beam, a longer beam under the shifter. The brace is 2x Technic Beam 1 x 6 Thin. Here, you can see the positioning of the pivot point, the indentation in the conveyor tower, which is 2 bricks deep to allow the pivot arm to travel that far. You can also see the black axle instead of the grey one, as it requires that extra 1L for the back and forth arm to pivot one. At the top, you can see where the slider platform connects and how it is moved 0.5L across. Shifter Changes in action: ___________________________________________________ Ball dumper by Ankoku It sits at the right height, the ball router works well and the axle housing is aligned correctly. As you can see above and below, I have added blockers to either side, which means that a renegade ball can't escape up hill. Balls can only pass when the router is in the correct position for that route. Inside is only 2 wide now and doesn't have any pins etc. ___________________________________________________ Ball unloader by @smdzucladoc After seeing Ankoku's mods as well as his detail photos of the bucket shifter, My ball factory has been much improved. I was still having a lot of friction in the ball loader until I add these mods. Now the ball loaders is very smooth. I add a 1x3 liftarm in between the two Axle and Pin Connector Perpendicular Triple and it seems that the loader doesn't bind to the axles anymore and it is very smooth. I also added some additional bracing to the back of the ball loader. I added two additional Technic, Brick 1 x 2 with Hole and a 1/2 bush to the bottom axle. I also change the axle 3L to 4L and added 2 Axle and Pin Connector Angled #1 and then a 6L axle perpendicular to try to brace the 12T and 40T gear as perpendicular as possible. ___________________________________________________ For inspiration, this extended version by @Jonas and black version by @Thunderthumbs And Steampunk version by @OneMoreRobot
  2. welcome to the mindstorm section of the Akiyuki project, this topic is for the modules of Akiyuki that have mindstorms in them or use mindstorms in any way. as always I would appreciate any information (pictures/videos) of these modules working or built here's what I know so far: Ball Cleaner EV3( in progress by @Juroen) program by Akiyuki ( file available instructions coming soon) Container Transporter NXT instructions available here by @Courbet program by @9v system available here Fast Ball Sorter EV3 instructions by Courbet, built by Courbet and Mogwai, program also by Courbet and Mogwai, Render by Blakbird(instructions available) building instructions, program for the ev3 any help would be good to get these modules made into instructions (programs will also need to be made) 9v system
  3. Update: Information regarding modules from 2018 onwards are represented after @Blakbird's original post. I want to keep BlakBird's section of the post as he left it, to honour the immense amount of work he put into it. ( @Ankoku @9v system) ----------------------------------------------------------------------------- Original Post Start ----------------------------------------------------------------------------- G%$ #@&% it. Thanks to Akiyuki, The Rebricker, and the rest of you &%$*ers, I've now caught the GBC bug and it is going to cost me a lot of time and money. It all started with Akiyuki. Well, GBC didn't start with Akiyuki, but I was more or less "meh" on the whole concept until he came along. His ingenious mechanical solutions are mesmerizing, perplexing, and wonderful. Although I admired them from the start, I figured there was more or less no chance of me replicating them from the videos, especially since the one I was most interested in was also the most complicated: the ball factory. My involvement therefore remained stagnant (and non-existent) for a couple of years until The ReBricker showed up and proved that you really could reverse engineer the Ball Factory and then went one step further and posted video instructions for the whole thing. "Fine", I thought, "I'll just build that one." A few months of LDraw modeling, part collecting, building, testing, and display case building later I was hooked. It was one of the greatest building experiences I've ever had. This forum has repeatedly wished for a comprehensive set of instructions for the GBC modules of Akiyuki, and I've decided it is my responsibility to help make your dreams come true. With that in mind, I've compiled a list of all of Akiyuki's 31 non-Mindstorms modules with the goal of creating and/or finding complete PDF instructions for as many of them as possible and compiling the resources here. I've made a lot of progress already. Here is the list along with whatever I know about building material available. (currently 31 of 31 complete) Pinball PDF instructions available from Blakbird and Courbet 992 parts Presentation Topic IO file Zigzag Stairs PDF instructions available from Courbet 481 parts Presentation Topic IO file Cup to Cup - Type 1 v1 PDF instructions available from djm v2 PDF instructions available from Blakbird 1089 parts Presentation Topic Cup to Cup - Type 2 PDF instructions available from Courbet 1222 Parts Presentation topic IO file Elevator Module PDF instructions available from Blakbird and Courbet 1621 parts Presentation Topic IO file Marble Run PDF instructions available from Blakbird and legolijtje 1140 parts Presentation Topic IO file Catch and Release PDF instructions available from Blakbird and jesuskyr 711 parts Presentation topic IO file Ball Factory Video instructions available from The Rebricker PDF instructions available from Blakbird 4428 parts Detailed review by Blakbird Spiral Lift Short Version 876 parts PDF instructions available from Blakbird Presentation Topic IO file Tall Version 1455 parts PDF instructions available from Blakbird and 9V System Presentation Topic Pneumatic Module PDF instructions available from Blakbird and jesuskyr 543 parts Presentation Topic IO file Archimedes Screw - Type 1 PDF instructions available from Blakbird and Courbet 995 parts Presentation Topic IO file Archimedes Screw - Type 2 PDF instructions available from Blakbird and Courbet 739 parts Presentation Topic IO file Archimedes Screw - Type 3 PDF instructions available from Blakbird and Courbet 768 parts Presentation Topic IO file Zig-Zag Lift PDF instructions available from Blakbird and jesuskyr 800 parts Presentation Topic IO file Basket Shooter V1 PDF instructions available from Blakbird and djm V2 file from 9v system 2226 Parts Presentation Topic Train Module - Type 1 PDF instructions available from Blakbird and Courbet Motor (157 parts) Switch (167 parts) Unloader (324 parts) Siding (106 parts) Loader (603 parts) Crane (3046 parts) Complete Set (4569 parts) Presentation Topic IO file of full layout Train Module - Type 2 PDF instructions available from Courbet Motor (160 parts) Unloader (751 parts) Siding (178 parts) Loader (835 parts) Presentation Topic Wheel and Steps PDF instructions available from Blakbird and Courbet 1198 parts Presentation Topic IO file Step Module V1PDF instructions available from Blakbird and jesuskyr V2PDF instructions available from Ankoku and 9v system 1785 parts Presentation Topic IO file Fork PDF instructions available from Blakbird 878 parts Presentation Topic IO file Six Heads PDF instructions available from Blakbird 1696 parts Presentation Topic IO file Bucket Wheel Tower PDF instructions available from Blakbird 1415 parts Presentation topic IO file for 8 bucket version Lifter Triggered by a Stuck Ball Video instructions available from The Rebricker PDF instructions available from Blakbird 1068 parts Presentation topic IO file Spiral Staircase PDF instructions available from Blakbird and jesuskyr 1923 parts Presentation topic IO file Tilted Rotors PDF instructions available from Blakbird 1223 parts Presentation topic IO file Invisible Lift Video instructions available from The Rebricker PDF instructions available from Blakbird 3203 parts Presentation topic IO file Cycloidal Drive PDF instructions available from Blakbird and jesuskyr 2081 parts Presentation topic IO file Fork to Fork PDF instructions available from Blakbird and jesuskyr 1743 parts Presentation topic IO file Planets PDF instructions available from Blakbird and Courbet 1558 Parts Presentation topic IO file Strain Wave Gearing PDF instructions available from Blakbird and Courbet 2789 Parts Presentation topic IO file Zig Zag stairs V1 PDF instructions available from 9v system 469 parts IO file Here's a montage of some of the LDraw work I've done so far which also gives you an idea of the relative scale of the modules: I'm not going to post any actual instruction files until I (or someone else) has tested them by physically building the model and proving that it works. I'm a stickler for accuracy, so I'm trying to get as close to Akiyuki's originals as possible. I already have PDF instructions ready for 4 of them and just need to test them out. As I build each model, I'll post a mini review about what I've learned and then I'll post links to the instructions and parts lists so anyone else can build them too. (Update: See bulleted list above for which instruction files are currently available.) As always, help is welcome. If you have successfully built any of these modules and are willing to share your information, please let me know here. In particular, I need LDraw files to make instructions. In a pinch, I can make them myself if you have detailed photos. In an even tighter pinch, I'm making everything myself from the videos, but it is slow going. Enjoy! Akiyuki GBC modules with instructions available to buy from the man himself ( In 2018, Akiyuki started to create instructions for some of his modules. Some for free, some require payment. For anyone who has tried to reverse engineer one of his modules, the price he charges is more than worth it. ) Hockey Stick Lift (2018) Catch and Spin Robots (2019) Heart Chain (2019) Peanut (2019) Akiyuki GBC modules with free instructions Cars with adaptive cruise control (2019) Spiral Lift GBC module compact type (2020) instructions by @FernandoQ New modules which currently don't have instructions available there are currently no new Akiyuki modules that need instructions Modules that were inspired or modified from this project Modules by @FernandoQ Serpentine PDF Instructions 1356 parts Pasillos/ Tilting ladder PDF Instructions 1140 Parts Modules by @Berthil Related threads Train System @Doug72 has created a dedicated thread for the Train System here: It contains many improvements, mods, additions etc. which anyone interested in the train system should check out! EV3 @9v system has created a dedicated thread for Akiyuki's EV3 modules: A thread dedicated to modules like the Ball Cleaner, Container Transporter and Fast Ball Sorter Robot.
  4. A new topic to attempt to centralize information, improvements and discussions about the most iconic Great Ball Contraption made by Kawaguchi Akiyuki,GBC Ball Cleaning Machine The thread is also a centralized location for all variations as well as newer design concepts of Ball cleaning machines.
  5. Inspired by the recently posted video and build instructions here on Eurobricks for Akiyuki's Ball Factory, I have reverse engineered Akiyuki's Cup-to-Cup GBC. It has been built with parts which I had available at the time, so it is a mixture of colours at the moment; The next steps are 1) model it using MLCAD to produce an appropriate LDraw file 2) use BrickLink to obtain the appropriate parts (to reduce the colour mixture) 3) create build instructions using LPub and test them using the parts bought in step 2 4) make the build instructions available for others It will likely be a few weeks before I get to step 4 but once I get there, I will post appropriate links in this topic. Regards, David
  6. I've designed the below GBC called Rainbow Wave. It has 38 Lego colors and about 1150 moving parts. It is powered by a single motor, with each of the colored pistons sitting on an 8-tooth gear. Each piston’s gear is exactly 1 tooth offset from its neighbors making one wave 8 colors. The GBC is level so the balls are moved by the waving surface. Free building instruction for version 2 and parts list is available on Rebrickable with a thank you @Courbet for the improvements and creating the digital model!
  7. Hello everybody, In this topic I'll put the different things I have in progress, (if any of them becomes consistent I'll open its own topic), and this way I won't put unfinished things in the general gbc thread. At the moment I'm experimenting with GBC, with the parts I have (mostly technic). As a sample, a test of Akiyuki's fork to fork mechanism, The truth is that I'm surprised that it manages to move balls. The conclusion for the moment : - recording with the mobile phone, turning the crank at the same time and catching the falling balls is difficult. -I need to register on youtube or instagram or something where I can post videos and not abuse gif files. I will continue with the trial and error to see what comes out. Regards
  8. i have been designing a module that splits the GBC stream into two straight lines. when i was playing with the cup to cup by akiyuki i came up with a good use for that spiral at the start of the module. the idea is the balls roll up then land on a tilting ramp which randomly distributes the balls left or right, but i also included a driving ring so the ramp can be permanently set left or right to use as a turning module. what do you think?
  9. After looking through the akiyuki project by Blakbird and seeing the success of it. It is time I steped up to the plate and create this thread so we can have a central place for all GBC instructions. so far here's what I have been able to find basic modules (great for beginners) simple conveyor module 2014 workshop module http://alittleslow.w...GBC Donahue.pdf brickworld 2015 wheel module http://alittleslow.w...GBC, rev 12.pdf slightly more complicated modules serpentine gbc module (under construction) http://www.moc-pages.../moc.php/407594 wheel gbc module http://alittleslow.w... Lift 12x12.pdf intermediate modules Akiyuki Lift triggered by stuck ball module If you find any gbc instructions post them here
  10. Finally got the instructions finished and you can find them here: ( The instructions PDF will take a few seconds before it starts downloading. Be patient, it will get there. No need to click it multiple times. ) There is a single set of instructions (PDF), but it comes in two versions. The main version, which uses less common pieces, which are more aesthetically pleasing. Then part lists for a version which uses more common pieces and colours. I have included BSX part lists for both versions and BSX part lists which only contain the pieces needed to upgrade the previous version to this one. The previous version, BSX part list etc. can be found here: The instructions will allow you to create the Cup-to-Cup Type 1 module which you see in Akiyuki event videos from 2013 onwards. I don't think I would have been able to do it without the additional photo provided by Akiyuki and obviously, it builds on the work done by @djm and @Blakbird It is not a faithful copy of Akiyuki's module. The differences are: I changed the hopper so balls won't get stuck behind the spiral lift. I left the support used to get the balls from the lift to the first cup unchanged from the very first version. It works fine, so didn't see the need for a change. The offramp has been redesigned to work with this version. Akiyuki dispensed with the offramp in 2013, using a separate module to do it. The original offramp doesn't work with this version. I tried to keep it similar. Feel free to rework it though. There are some minor changes to the spiral lift to make it work better. It has been good to get this done, as I never liked the motion of original design. Having the motor so far from the cup-to-cup mechanism meant that it wasn't as smooth as you might like. Which is why I think Akiyuki changed it. It is called v1.2 since I class the original grey version as being v1.0 and the yellow version as being v1.1. v1.2 denotes the change in drive mechanism. This has not been event tested. I would advise testing/modifying as required before using at an event over a prolonged period of time.
  11. ... whis is, of course, a personal remake of a famous design from Akiyuki ! (because I admired how he turned/staged industrial speed reducers into ball transportation mechanisms) Another motivation was that some famous GBC designers (Josh DaVid, Sawyer) re-create well-known designs in a smaller form factor. And of course, the "self-challenge". So here is my currently final work (despite not yet well-polished regarding input and output's aesthetics) : UPDATE 20200410 : link to a higher quality video of a test : As introduced before, I haven't changed the core mechanism, which relies on the two following main tricks : using 180-53° liftarms for building the heptagonal structure of the "rotor" (only approximately 2° of mechanical stress per side) central pivot achieved by a pseudo gear bearing (pivot = sun gear ; rotor = planet carrier ; no ring gear) because no 7-beam hub does exist in LEGO and less than 7 beams is impossible because 7 is a prime number (whereas Akiyuki's rotor has 9 sides ==> 3 --double-- beams on a 6-hole pulley) The only changes I made (since the above older pictures) were : on the stator, new support structures for the big "teeth" and a brick-based rear wall (for preventing the rotor from wobbling and jamming) the ball catch mechanism : instead of the previous 3-finger layout (with one moving finger), I switched to Akiyuki's 2-(hollow)finger solution, using old crank parts and the material's flexibility : it takes less room, making the ball catching easier the ball can be pushed in/out in perfectly opposite directions, making it possible to load it at the very bottom and to unload it at the very top Then I managed to build the output ramp and input mechanism (input bin with basic steering + 1-by-1 ball distribution) and to adjust them, after several trial-and-error steps too. (I initially attached all the elements on a baseplate in order to quickly adjust them with respect to each other, before linking them together in the form of a hollow but stiff chassis). The mechanical inputs are a crank (behind the stator) and a motor input (behind the input bin).
  12. Hi everybody. This is my first post (except the "members' introduction"). Not being sure if it is the correct way/place to start I at last go into posting about my GBC projects, which are all only at WIP stage now. I already watched and read a lot of GBC resources (events videos, standards, famous modules and builders, balls sourcing hints...), which gave me a few ideas of custom builds, which will be new ideas as well as "remakes". But my work is currently slowed down by a few difficulties when leaving the dark age (getting used to studless building techniques when designing custom only, missing parts despite a huge initial BrickLink investment), so the results would show up bit by bit only. So, for more concrete stuff, my most advanced work is on a compact cycloidal drive, of course inspired by Akiyuki's one, but being a fully custom from-scratch and trial-and-error build. At its current state, only the core mechanism is available and it runs smoothly. However the ball transport (currently built on only one cycloidal "tooth") seems to be the hardest thing to make reliable, and it is not yet the case. A stiffer chassis (with the input bin and agitator + secondary ball transport mechanism will be required too. I'll build it with bricks mainly (when I'll find an opportunity to pick up my childhood stock). The core mechanism features an outer ring of 8 teeth, based on an octagon made up of 6L axles and 135° connectors, and a 7-teeth cycloidal disc (and some associated tricks), resulting in approximately 2/3 the size of Akiyuki's original design. So is my prototype worth a picture right now ? (a few other modules are planned but I built only draft/mock-ups of the core mechanisms now due to the lack of parts.)
  13. So a few months ago I made a smaller version of Akiyuki's invisible lift, the problem was that I didn't have instructions for my version and it was not very reliable. I have now made a new version which is more reliable and uses less pieces.
  14. (Larger versions of any image available by clicking.) Although I find the whole concept of the Great Ball Contraption fascinating, I have to admit that I have not been particularly tempted to build one myself in the past. I can't say for certain why this was so, save perhaps that I saw too many versions of the standard conveyor built with tracks. Then Akiyuki started creating modules and posting YouTube videos and I was blown away. He has not only created some of the most mechanically complex LEGO creations ever, but he has managed to make them beautiful and mesmerizing at the same time. My favorite of these is the Ball Factory, a stunningly complicated mechanical creation powered by only a single motor. This model not only performs the standard GBC function of moving balls from left to right, but also integrates a similar system of moving buckets which is seamlessly integrated with the ball functions. See for yourself. Akiyuki's original video: I was enthralled by the video but figured I had a nearly 0% chance of ever reproducing this model without full instructions. Enter "The Rebricker", an AFOL who spent 2+ years reverse engineering this model and then creating a series of showing how to put it together. Beginning with his excellent videos, I spent about a month recreating the model in LDraw. This process of placing each part one by one resulted in my understanding of how the model works so that it was actually a reasonably simply matter to build it in real life. After completing the LDraw file I made a parts list and started putting together a bin of the required parts. While waiting for them to arrive, I made the cutaway render below in an effort to show how the model works. While this type of image may work with a typical model, you don't have to look at this image for very long to realize that this model is far too complex to understand with only a single image. Therefore, I'll divide the model into modules and go through the function of each of them one by one. The image below shows each of the modules color coded. Even with this level of subdivision, it is still difficult to see what is going on. Black = Main Power Distribution Green = Ball Spiral Lift Purple = Ball Lifter Gray = Ball Picker Lime = Ball Return Conveyor Brown = Ball Output Selector Blue = Bucket Wheel White = Bucket Loader Orange = Bucket Unloader Yellow = Bucket Conveyor Red = Bucket Shifter Tan = Bucket Dumper Balls start the journey at the input hopper and then are helically lifted by the spiral lift. After rolling down a small ramp, they are pushed onto a couple of pin joiners and then lifted and pushed into a 5 finger claw. The claw translates to the right and drops a pair of balls into a waiting bucket. The entire bucket wheel then rotates until it reaches a point that the bucket unloader lifts the bucket off the wheel and places it on a conveyer. The bucket is enqueued in the bucket shifter and shuffles along until it is dumped out. Depending on the position of the output selector, the balls are either passed to the next module or recirculated back to the input hopper via another conveyor. The empty bucket continues its journey by being lifted and placed back on the wheel. Like a wheel, the whole thing repeats and the cycle continues. To further simplify the functions, I've subdivided the model into three basic systems. The black parts are the motor (or crank) input and the main power distribution. The yellow parts deal with moving balls around, and the red parts deal with moving buckets around. The first module we'll discuss is also the simplest: main power distribution. The entire model is powered by only a single motor or crank. While driving the whole thing off one motor may seem unnecessarily difficult, it is actually the opposite. Because every module must be precisely synchronized with every other, a mechanical interconnection is required. The only alternative would be a maze of Mindstorms controllers and sensors, and it probably wouldn't work as well. Amazingly, when properly tuned the whole thing works with minimal effort at the input crank, and it is quite enjoyable to operate manually. If motorized, even an M motor is adequate. However, care must be taken to only rotate the input crank clockwise. Driving in the wrong direction will result in some disconnection and loss of synchronization at best, and at worst LEGO shrapnel all over the room. In my image below the input is shown in red and rotates at 1:1 with the motor. After passing the yellow idler gear, all the blue axles rotate at 1/2 speed. For ease of explanation, I'm going to assume that the input rotates at 600 rpm and make all my other calculations accordingly. (I know this is faster than a real M motor can turn, but this number makes the other calculations convenient for reasons that will become clear later.) This is 10 rotations per second. The blue axles therefore turn at 300 rpm. In every location where you see a green pinion gear, a function is driven from the backbone. You can see that all the bevel gears are braced by brackets and never skip. A skipping gear would be death since it would destroy synchronization. The most prominent feature of the model is the bucket wheel. This large wheel rests on a Technic turntable and consists of 16 platforms connected by #3 connectors (22.5 deg x 16 = 360 deg). It is very important that the movement of this module be intermittent. It cannot simply be geared to rotate at a constant speed. Rather, in must rotate 22.5 degrees and then stop, waiting for a bucket to be loaded or unloaded. This movement is achieved with the mechanism shown in orange. The 40 tooth gear connects to the backbone. The vertical axle rotates the disc. For 3/4 of the rotation, the 4x4 round corner bricks ride against the 3L blue pins on the bucket wheel and prevent the wheel from moving. The 1x2 panel then initiates motion and the end face of the corner brick completes 1/16 rotation of the wheel. Since the backbone is turning at 300 rpm here, after the 5:1 reduction of the 40 tooth gear the orange disc is turning at 60 rpm. Since the load wheel rotates 1/16 turn for each revolution of the disc, the load wheel is turning at 3.75 rpm. This means a complete revolution of the wheel happens every 16 seconds. Therefore, each bucket remains in position for exactly 1 second before moving on. (Now you can see why I chose 600 rpm for the input speed.) Some tidbits about this module: Because there is 4L axle between each connector, this is not a perfect 16 sided polygon and there is a small bit of stress in the connectors. The orange disc in one key part that cannot be rotated backward or it will jam against the load wheel. I took apart my turntable and added some silicon spray to make it turn more smoothly. At any given time there are only 12 buckets on the wheel; the other 4 positions lie between the bucket unloader and the bucket loader. The wheel rotates counterclockwise. When a filled bucket reaches approximately the 3 o'clock position, it is lifted from the bucket wheel by the bucket unloader and placed on the bucket conveyor. This is much easier said than done. The claw which grasps the bucket must perform a carefully choreographed dance in which it translates radially inward to grab a bucket, then lifts it, then translates in radially outward to lie over the conveyor, then sets it down. This means that both a radial and a vertical motion are required, and they must be synchronized perfectly. The claw is shown in blue. The spacing of the jaws must be adjusted such than they just grasp the tapered sides of the bucket. The entire claw moves radially on the yellow carriage. The yellow carriage also translates up and down when pushed by the orange lift assembly. Vertical motion is driven by the orange lift assembly. The 40 tooth gear is driven by the backbone and turns a 3x3 crank. This crank pushes against a 7L lever. Note that the crank holds the lever in position for 1/4 revolution before releasing it. This lever drives a pushrod which turns a 4x5 L-shaped crank. The crank then pushes against the yellow beam to lift the carriage. The maximum height of the lift can be adjusted by changing the length of the pushrod. The yellow carriage slides up and down on the vertical axles, and carries the blue claw with it. Only gravity returns the carriage back down when the orange crank moves out of the way. Sometimes the axles can be sticky and the carriage does not go down right away. The red gear system controls radial motion of the claw. The 40 tooth gear is driven by the backbone and turns a 3L liftarm crank. This crank uses a pushrod and lever to rotate a 36 tooth gear. The 36 tooth gear drives a 12 tooth gear which is connected to a crank driving the vertical red axle. This red axle drags the blue claw along the yellow carriage. The goal is to move the crank +/- 90 degrees which is why the 3:1 reduction of the double bevel gears was needed. Although the purpose of the red mechanism is only to move radially, it also moves up and down as the crank swings through its arc. For this reason, the vertical 8L axle must be able to slide through the holes on the blue claw. Some tidbits about this module: The 40 tooth gears each rotate at 60 rpm which means the unloader cycles at once per second, perfectly synchronized with the bucket wheel. It must be carefully tuned to pick up a bucket only when the wheel is stopped, and to be out of the way before the wheel starts moving again. It must also deposit the bucket on the conveyor and allow the conveyor to whisk it away before moving back toward the wheel. The bucket conveyor is among the simplest mechanisms in the machine. It is not driven off the main backbone, but actually off one of the bucket shifter axles which has already been reduced 5:1, therefore the long drive axles turn at 120 rpm. The bucket unloader deposits the buckets on the yellow conveyor which then moves them to the green conveyor. At the far end of the green conveyor, the bucket shifter grabs the buckets and moves them off. While this module doesn't need to be synchronized to be in a particular phase with the other modules, its speed is very important. It needs to deliver exactly one bucket to the bucket shifter each time the shifter moves or a queue of buckets will develop. The speed of the conveyor and overall number of links is therefore critical. Some tidbits about this module: It is important that the yellow u-joints be clocked in phase with each other so that the movement of the yellow conveyor is smooth. The yellow conveyor is 1 plate higher than the green conveyor to help with transferring a bucket from one to the other. A small guide had to be added above the transition (visible in the render) to prevent the corner of a bucket from getting stuck in between. At any given time there are usually 3 buckets on the conveyor. The bucket shifter takes buckets from the conveyor and moves them toward the bucket dumper, eventually driving them into the arms of the waiting bucket loader to go back on the wheel. The spacer shown in black has slots for 5 buckets, and there is often also a bucket to the left of the leftmost slot. This mechanism needs a complex motion consisting of both side-to-side and front-to-back movement.It must move the buckets to the side, then shift back out of the way and translate back to its starting position without touching any buckets to start again. The whole things is driven by the apparatus shown in yellow. The 40 tooth gears are driven by input backbone and therefore rotate at 120 rpm. Each drive a chain system consisting of 23 chain links and a single tread link. When they get to the right point in their cycle, the tread links push the red and blue carriages in and out via the vertical 5L beams. The red carriage controls front-to-back movement of the spacer and the blue carriage controls side-to-side motion. As the red slider shifts back forth, it drives a pushrod moving a Z-linkage (the pink pin is ground). This Z linkage slides the red carriage front-to-back on the blue carriage. The black spacer is supported on the red carriage. Note the axle on the red carriage which must be able to slide through the top part of the Z-linkage. This all has to be kept perfectly square to avoid friction. As the blue slider shift back and forth, it drives a pushrod moving an L-shaped crank (the light blue connector is grounded). The side-to-side motion of the output of the crank translates the entire blue carriage side-to-side on fixed axle supports (not shown). Some tidbits about this module: Because 24-tooth gears drive the chain, and because the chains have 24 links, you might think that this would make the bucket shifter operate at 120 rpm. This would be a problem because it would deliver 2 buckets every second instead of one. However, remember that each chain link is actually made up of two cross braces (or teeth), and therefore this extra factor of 2 gives us 60 rpm (one per second). The placement of the track links on each chain must be precisely synchronized. If a link were trying to move a slider left and the same time as another link were trying to move it right, the mechanism would destroy itself. This mechanism cannot be run backward. The track links jam against the sliders. The bucket shifter must be timed to align perfectly with the bucket dumper and the bucket loader or buckets will be thrown on the floor or, worse, down into a mechanism. At any given time there are 5 buckets in the bucket shifter. The bucket dumper picks up a bucket from the 3rd position of the bucket shifter and dumps the balls into a waiting hopper. It then deposits the bucket back into the bucket shifter. It must accomplish all of this during the tiny amount of time that the bucket shifter is stopped, about 3/4 of a second. The white 40 tooth gear is driven by the backbone. It turns a 3L crank which drives a vertical pushrod driving a 4L crank. This is connected to an inverted V-shaped linkage. Two different motions are possible when the V-shaped linkage is rotated. Since the far end of the links is attached to the green carriage, the green carriage can be driven along the purple sliders. However, if the green carriage encounters an obstacle (like a bucket) or if the green carriage bottoms on the end of the track, then motion of the white linkage rotates the whole purple assembly up around the exposed axle on the right. This whole system results in a 4 stage motion. First the green carriage moves to the right to grab a bucket, then the purple assembly lifts and tilts, then it comes back down, then the green carriage releases the bucket. All of this motion occurs in response to the continuous rotation of the lower white crank. Some tidbits about this module: Because the white gear rotates at 60 rpm, one bucket is dumped per second. The bucket dumper must accomplish its job during the tiny amount of time that the bucket shifter is stopped, about 3/4 of a second. The purple 3L axle sticking out at the left of the image is a down stop to prevent the purple mechanism from pushing down on the bucket shifter and jamming it. The final part of the bucket system is the bucket loader which accepts buckets from the bucket shifter and places them back on the wheel. This module has the most complex motion of any of the bucket system because it must translate, lift, and rotate all in a synchronized fashion. The claw starts by facing the bucket shifter which pushes a bucket into the empty claw. The claw then simultaneously lifts, rotates 90 degrees to face the wheel, and translates toward the wheel. When it reaches the wheel, it moves down to deposit the bucket and then pulls back out the way to begin again. The first part of the system is the "quick return mechanism" shown in orange on the lower right. The 40 tooth gear is driven from the backbone and drives a crank arm made from cams. This crank arm moves a 9L lever back and forth. A long pushord then connects to a 4L crank arm at the other end. This crank is geared up 2:1 to allow a +/- 90 degree movement of the vertical orange arm. This arm drives the white carriage toward or away from the bucket wheel. The white carriage slides on a pair of fixed axles (not shown). When the carriage is away from the bucket wheel, it needs to rotate 90 degrees to point towards the bucket shifter. This rotation happens passively without an active mechanism. The L-shaped 3L black liftarms at the bottom of the claw contact the curved dark gray brick and drive the rotation at the right point in the cycle. The brown mechanism controls vertical motion. The 40 tooth gear is driven by the backbone and drives a 3x3 crank. This crank presses a lever for 1/4 of its revolution. The lever lifts a pedal which is under the black claw, lifting the whole thing. Note that the black claw must be able to slide through the white carriage as it raises and lowers. Some tidbits about this module: When the orange quick return cam connection is at the bottom of the lever, near the pivot, the lever moves slowly. When the cam connection is at the top of the lever, away from the pivot, the lever moves quickly. This allows for slow movement of the claw when a bucket is held, preventing dropping the bucket. But return of the claw when empty happens quickly. If the speed were made uniform over the whole cycle, the claw would move too fast when holding a bucket and drop it. The jaws of the claw can be adjusted to provide exactly the right spacing to lift the buckets. The bushings at the end of the orange pushrod can be adjusted to give exactly the right rotation of the crank. Every portion of this mechanism has to be perfectly timed to synch with both the wheel motion and the bucket shifter motion. The whole module runs at 1 cycle per second, just like the other major assemblies. Now we'll move on to the ball systems. The balls start the cycle in one of two hoppers, either coming from an upstream module or being recirculated from the ball factory. Both hoppers feed the bottom of the spiral lift. The spiral lift functions very simply by rotating against a set of fixed ribbed hoses. The lift drum has 6 flutes each of which can trap a ball and roll it up the spiral. When a ball gets to the top of the spiral, it bumps against a slope which knocks the ball into a nearby ramp. At first it might seem that this module does not need careful synchronization like the other modules, but this is not the case. The module must deliver balls at the same rate as the machine consumes them or it will either form a queue (disastrous) or fall behind (annoying). Unlike the other modules, this one is not driven by a 40 tooth gear from the backbone but by a 24 tooth gear. This means the input axle rotates 3 times slower than the backbone or 100 rpm. A further 5:1 reduction means the drum is rotating at 20 rpm. Singe the drum has 6 flutes, it is delivering 6 balls per revolution for a total of 120 balls per minute, 2 per second. Every bucket takes two balls, so this works out perfectly. The ball lifter accept balls from the spiral lift and pushes them up into the waiting jaws of the ball picker. It operates on two balls at a time. A pair of balls roll down a ramp and drop in front of the blue pusher. The pusher moves them forward and they drop into the recesses of inverted Technic engine cylinders (not shown), a unique parts usage if ever there was one. The white pin joiners, now centered under the balls, then push them up. The red 40 tooth gear is powered from the backbone. The attached 3L crank pushes down on the red pedal which pivots on the central pin axis. The other end lifts the white ball lifter. The white lifter motion is very simple, moving in a guided vertical direction. The blue 4 bar linkage is slaved to the same 40 tooth drive gear. A 2L crank pulls down on the vertical blue axle which pivots the ball pusher forward while it remains level. Note that it does not return via the red powered input, rather a counterweight pulls the ball pusher back to starting position. Some tidbits about this module: The ball pusher could work without the counterweight, but then the system would have to lift the balls and move the blue pusher at the same time. By using a weighted return, the drive system doesn't have to lift two things at once. This reduces power demands on the system. The red gear turns at 60 rpm which means this whole system operates at one cycle per second (two balls per cycle). The lifting and pushing functions have to be perfectly synchronized. The ball picker is a fascinating contraption. It receives balls from the lifter and moves them over to the wheel and drops them into a bucket. the yellow and orange system control horizontal motion and dropping, and are interconnected. The yellow system is driven from the orange 40 tooth gear off the backbone. The 3L crank drives a horizontal pushrod which in turn rotates a 2x4 crank. A connected 4L crank lifts the vertical yellow beam which turns the 36 tooth gear. This is then geared down 3:1 to achieve a +/- 90 degree motion in the final crank. This crank slides the claw along a track made from 12L axles (not shown). Because the crank also goes up and down, it needs to be able to slide along the vertical claw axle. The orange system drops the balls. The claw is spring loaded shut via a rubber band. When the balls are pushed up by the lifter, it drives the jaws apart slightly which then grip and hold the balls. The light gray arm at the bottom right of the claw must be pushed to open the 2 forward jaws and drop the balls. The orange 3x5 L-shaped beam provides this pushing motion. It is driven through a fairly complex linkage by the input 40 tooth gear. There is a towball on the gear which pushes a lever, bumping the 3x5 beam to open the jaws. Some tidbits about this module: The length of the final yellow crank can be adjusted to control the endpoints of the claw. The claw deposits 2 balls per second into a bucket. A large counterweight is used to make sure the ball dumper is never engaged while the claw is translating or the system would jam. It is also needed because the towball can only push and not pull so there is no other return mechanism for the orange parts. The simplest of all modules in the ball output selector. This is not part of Akiyuki's original design but was added by The Rebricker. When the balls are dumped out of the buckets they hit this angled plate and can go either left or right. Tilting the plate right rolls the balls down a ramp and dumps them overboard to a downstream GBC module. tilting the plate left rolls the balls down another ramp to the return conveyor. Having this selection available allows use of the ball factory either in a larger GBC setup or in recirculation mode as a self contained module. I don't know the function of the Plinko style pins on the platform, but they look kind of cool. The ball return conveyor was added by The Rebricker to allow use of the ball factory in recirculation mode. It accepts balls from the bucket dumper and returns them to the input hopper. Because it travels up a significant slope, it cannot just use tread links because the balls will slide down to the bottom. A series of 7 cleats are made from 1x3 plates and tiles and affixed to every 11th tread. Each cleat carries 2 balls, and the timing works out nicely such that no queue of balls is produced. Now that you know how the whole thing works, what is it like to actually build this thing? I found it a real joy. None of the building techniques are very complicated in and of themselves, so the actual assembly is pretty simple if you are following the videos. The timing, on the other hand, is another matter. In some cases, being off by a single gear tooth is a problem, so every module has to be synchronized with every other. I found this process enjoyable, but others may find it frustrating. You won't see an official LEGO set anything like this. Let's take a look at the massive pile of parts. There are about 3100 parts here, but note that no motors are technically required so the cost does not have to be super high. Although this is a technical model, most of the parts are still standard bricks and plates. Here are all the modules built and arrayed on a table. At this point I had already completed the build and run the factory for a few days, but I found that sometimes a ball would drop down inside. The studs of the base plate would hold the ball and make it very hard to extract since the access is so limited. To combat this problem and also to improve appearance, I added 1200 tiles to make a tile floor. It worked great on both fronts. In all I spent a couple of months building the LDraw file, collecting parts, building, and troubleshooting. My family has never been so fascinated in watching a LEGO creation, and that's exactly the reaction I was going for when I decided to build this. The build is not for the faint of heart, so I recommend it only for those who feel the technical achievement is worth the effort. But if you are one of those people, this is as good as it gets.
  15. As I am packing to move to my new house, I am forced to take stock of my current collection and conclude that it is ridiculous. I've disassembled a number of old Technic sets and a few Technic MOCs, but in particular I went overboard on building Akiyuki GBC modules. I've chosen a few of them to get rid of, but rather than just part them out I thought I would offer them up to see if anyone is interested. I could take them apart and ship them or, if someone is close, they might even want the custom display cases I built! Here is a list of those that will need to go. If anyone is interested in making me an offer, please contact me by PM. Elevator Lift Triggered by a Stuck Ball Zig-zag Lift Catch and Release I had already previously parted out two others, but if anyone wants them I probably still have the parts. Pneumatic Module Fork Module
  16. Akiyuki, did it again! Check out his latest invention: LEGO Automatic Liftarm Sorter LS-L407 :thumbup: