Search the Community

Showing results for tags 'all-terrain'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Frontpage, Forum Information and General LEGO Discussion
    • Guest Section - PLEASE READ BEFORE YOU REGISTER!
    • New Member Section - PLEASE READ BEFORE STARTING!
    • Frontpage News
    • Forum Information and Help
    • General LEGO Discussion
  • Themes
    • LEGO Licensed
    • LEGO Star Wars
    • LEGO Historic Themes
    • LEGO Action and Adventure Themes
    • LEGO Pirates
    • LEGO Sci-Fi
    • LEGO Town
    • LEGO Train Tech
    • LEGO Technic, Mindstorms, Model Team and Scale Modeling
    • LEGO Action Figures
    • Special LEGO Themes
  • Special Interests
    • The Military Section
    • Minifig Customisation Workshop
    • Digital LEGO: Tools, Techniques, and Projects
    • Brick Flicks & Comics
    • LEGO Mafia and Role-Play Games
    • LEGO Media and Gaming
  • Eurobricks Community
    • Hello! My name is...
    • LEGO Events and User Groups
    • Buy, Sell, Trade and Finds
    • Community
    • Culture & Multimedia

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


What is favorite LEGO theme? (we need this info to prevent spam)


Which LEGO set did you recently purchase or build?


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Country


Special Tags 1


Special Tags 2


Special Tags 3


Special Tags 4


Special Tags 5


Special Tags 6


Country flag

Found 4 results

  1. Hello Eurobricks! Here is a Blue Mamba V2 - a wild mix of energy and rigidity. The story begins. Several months ago I build a fast off-roader for the King Of The Hammers competitions. The main idea behind that car was the minimalistic transmission. Well, there were now gears in the transmission, but there were CV-joints at the front axle and they were very weak! There was no way to fix that problem until one Russian AFOL comes with the custom wheel hubs with metal bearings and metal U-joints! These hubs allow to use a variety of RC wheels with 12 Hexes. Awesome! I purchased a set of custom hubs, and started the development of the Blue Mamba V2. Before diving into details I want to highlight another principal change in V2 project. V1 Mamba was powered by Buwizz 3.0 unit, but it drowned with my mid-scale trophy truck this spring. So for V2 Mamba I bought a custom Lego-compatible compatible RC controllers “Wixy” provided by another Russian AFOL. These controllers allowed me to use all benefits of GeekServo and Powerful 3S Lipo with 2600 mAh capacity. Bodywork. The car has a minimalistic bodywork. All panels used as structural elements. There is a plenty of space for the cockpit if one would sort all the wirings. The only decorative element is a fake V6 engine located behind the cockpit. Currently I have no PF motor available to make the engine work, but I keep in mind such possibility. Drivetrain. Blue Mamba V2 is a true E-vehicle with 4 PF L-motors powering each wheel independently without any transmission. Custom wheel hubs with metal bearings and metal U-joints make the transmission totally undestroyable. My goal was to minimize the width of the car. But the complexity of the front axle provided a lot of restrictions, so I had to widen front axle by 2 studs comparing to V1 Mamba. V1 Mamba has a steering motor located in the cockpit and linked to the front axle with new CV-joints. I replicated same configuration to the V2, but driving tests revealed big wobbling of the steering system, so I decided to place a GeekServo on the front axle (luckily it is very compact). A small regret is that GeekServo is not powerful enough for this wide and grippy RC wheels, It can not return them back if the car does not move. Likely, a positive caster angle of the front axle helps to back steering when car moves. Suspension. Mamba has 3-Link bridges at both axles with heavy-duty suspension arms. I had many attempts with the spring attachment. Finally, I understood that a responsive suspension requires a direct mounting of springs to the axles. 9.5 L shocks has very good springs (comparing to the soft 9.5 L one), but they were too hard for the car because all motors were placed on axles. An interesting idea came to my mind: why don`t you place these shocks diagonally? It works like a charm! Control. Car has a low center of gravity due to the placement of motors and 3S Lipo batteries. In addition, it has a proper wheel base and grippy tires, which makes the car very stable. Accuracy of GeekServo and RC transmitter provide a very smooth driving experience (though a stronger servo motor would improve the performance). Finally, 4WD helps to go through any terrain, such as sand, grass, etc… The top speed of the car is about 8.5 - 9 km/h. So it is very interesting to play with it outdoors and take it for a walk, since it has enough speed to drive back and forth while person walks. I tested this car with 120 mm RC wheels. The motors have enough power to handle and increased load while all the other plastic components (such as steering elements) were struggling a bit... On my opinion, 95-100 mm wheels are the optimal solution for fast outdoor cars. From one hand they provide a decent ground clearance and able to roll over the bumps. From the other hand they does not provide a lot of stress to the Lego parts. ' Conclusion. After multiple outdoor tests I conclude, that Blue Mamba V2 is the perfect Lego car, which is capable to go through any terrain with decent speed. It is strong and efficient and very controllable vehicle, which is pleasure to drive! Though It is too fast for trial. It is hard to go 2 km/h balancing between obstacles and barriers. But this is not a disadvantage, simply because each vehicle has it`s own areas of use. P.S. Speaking about Wixy Some of you wanted to know more about "Wixy" setup. So I placed all the component on the desk and marked them as follows: Wixy units RC receiver 3S Lipo PF motors Geek servo "Wixy" unit plays a role of an RC ESC unit, and it connects to the other electronic components in the same way: B-cable transmit the power from Li-Po batteries to the bottom PF connector (input) of Wixy units. A-cable feeds an RC receiver for Wixy units and translates the controlling signal at the opposite direction. Unusually for drive the "Channel 2" is reserved. PF motors get connected to the top PF connector (output) of Wixy units. GeekServo gets connected to the receiver. Two Wixy units provide enough power to feed GeekServo, otherwise I can plug and extra power from one of B-cable outputs (there is one specific 3-pin one). At the second picture all components are connected. It is important to note, that a Single "Wixy" unit can transmit only 3A to the motors, but it is the maximal power which PF connectors can handle . So you have to use one unit per Buggy motor. Luckily, 3S Lipo as an enormous amount of power, so it can handle 10 Buggy motors easily! Hope I cleared out the "Wixy" setup for you, but if you have any questions left, do not hesitate to ask them!
  2. As a tribute to this truck this project shows some of the unlimited possibilities. It is a model of a KrAZ 255B 6x6 off-road truck which is used for extreme applications. Even though this specific truck was never produced as a civilian truck however after its retirement it has been used as such. Within a couple of minutes it can be changed into one of the four different editions which include: - Semi-truck with fifth wheel - Ballast tractor with ballast box - Trial Truck edition - Log Truck with stinger steered trailer So it is up to you what kind of job it does: just having fun as it being a Trial Truck, or will you give it a semi-trailer? Or will it be hauling logs? The truck features: solid axle suspension on all axles of which the rear axles use a tandem bogie suspension, PF powered driving on all axles 6x6 drive, reduced speed to increase power/torque, Servo powered steering, fully functional fifth wheel, modeled V8 engine, detailed cabin interior and two light units. Actually you could build this yourself. Building instructions and inventory/parts list are available. Early in the building process you will see what it is that you are building. You will be very excited from the moment you start the build of "Truck T14" KrAZ 255B 6x6 till you finish it with about 290 different parts totaling 1800 pieces. Scale: 1:17,5 Length: 477 mm (+ trailer 926 mm) Weight: 1,92kg (+ trailer 2,41kg) Parts: 1840 (+ trailer 2270) This KrAZ 255B 6x6 model is powered by a YaAZ-238A V8 4-stroke Diesel Engine which is visible with the hood opened. This power source has 8 cylinders in a V setup with a displacement of 14,87 liters. The initial YaMZ-238 delivered 215 hp with a torque of 785 at 1500 rpm. Since 1966 the YaAZ-238A engine was installed and delivered 240 hp with a torque of 883 at 1500 rpm. This detailed V8 engine is nice to build and to give it those realistic looks a total number of 80 parts is used. It is detailed with for example air filter, fan, fan belt, pulleys, hoses, by-pass oil filter and the exhaust system. Both L Motors, which are used to power the truck's drivetrain, are positioned laterally on each side of the chassis. The rotation of both L Motors is reduced using a single gear reduction one for each. The power produced by these motors individually is merged by the length differential. To increase off-road capabilities it has limited slip applied. One out going shaft is powering the front axle, but not without being geared down once more. The second out going shaft of the length differential is powering both rear axles. Both rear axles have there own gear reduction which is equal to that of the front axle. Again limited slip is applied, but to the rear axles only. The front axle has Rubber Belts installed instead of shock absorber. It's double rear axle setup is fitted with a tandem bogie suspension. The use of this setup allows easy axle and wheel travel. Both front and rear axles are fitted with "Technic Steering Wheel Hub with 2 Pin Holes". These hubs have proved to be a real improvement, less friction and the wheels do not bend under the weight of the model as it would without. Semi-truck with fifth wheel For a basic configuration a fifth wheel is mounted. Because of this a semi-trailer can be hooked up. Since this is a common application it makes the truck extremely versatile and depending on the used trailer it still suites any kind of terrain. At the rear end of the chassis has wedges installed to allow easy attaching of any semi-trailer. By adding a winch the versatility can even be increased. The battery box is simply sitting behind the cabin and the spare tire is mounted to the truck's roll bar. Ballast tractor with ballast box As used to haul extremely large and heavy loads this truck can be fitted with a ballast box. What it basically does is adding weight to the rear axles to improve traction. While fifth wheel mounted trucks have there semi-trailer to add weight to the rear axles it is now replaced with a ballast box. The truck's battery box acts as the actual weight. A spare tire is mounted that fits the truck as well as four spare tires that would fit for example a drawbar lowboy trailer. Trial Truck edition To be used as just an off-road truck to fool around with a trail truck body can be installed. To distribute the weight of the truck equally over all axles the battery box placed on top of the rear axles. Even though spare tires are not common for trail trucks two are installed to improve the looks of this truck. It is always impressive to see a truck with these large wheels having some spares. Mounted to the roll bar and easy to access when needed. Log Truck with stinger steered trailer Using this truck to transport logs requires to additions. The first one is a bolster mounted to the truck's chassis. It is sitting directly on top of both rear axles which enable good weight distribution. Second is the stinger steered trailer. Basically this trailer is a large tube with a tow ball at one end and a partial chassis with a bolster and two sets of wheels attached to it. The two sets of wheels are attached to solid axles which uses the same hubs as the truck does. Essentially the axle setup is equal to that of the truck without the drivetrain. Again it uses a tandem bogie suspension setup which allows easy axle and wheel travel. To hook it up to the truck it has a tow ball which connect to the truck's tow ball socket. The trailer's bolster is exactly the same of that of the truck and both are foldable. Finally the partial chassis with the axles and bolster attached is slidable. Allowing the full log combination to haul different lengths of logs.
  3. Ladies and Gentlemen, Boys and Girls, BEHOLD: The Mighty MAZ 7310 Uragan Cargo Truck, in LEGO! This massive set, which I have designed over the course of two years, stands almost ten inches tall, two feet long, and is comprised of almost 7,000 pieces. I sat at my computer for hours a day, sometimes, surfing the web, looking at blueprints, building, deleting, building some more, etc. And now, finally, I can reveal my masterpiece to the world! Bwa-ha-ha! Okay, anyway, I have designed my set for maximum playability, stuffing it full of all sorts of awesome goodies, like opening hood, doors, tailgate, and utility boxes. A removable roof, folding rear seats, free-spinning wheels (including the steering wheel), two Diesel engine options, a generator, compressor, radiator, Master Mechanic's Toolkit, fuel and water drums, 12v batteries, large cargo container, winch, wide-load flags, roof racks, warning beacon, fog lights, two sets of mirrors, lightbars, and more! (Whew! I'm out of breath!) Now, for the real machine: The MAZ 7310 (Minsk Automobile Plant, in Russian), was a large 8-wheeled Missile Transport truck built in the 1950s and 60s. Soon after, people started using them as cargo trucks, tankers, tow trucks, and airport fire trucks. Alright, that's it! Thank you all for looking at my LEGO creation! If you have any questions, comment, I'll do my best to respond ASAP. Happy building and have a great day! Update: Also, some of you may have noticed that the cab of the real vehicle is slightly longer. This is true, I had to shorten the LEGO version out of necessity, as the extra length could’ve affected my MOC’s stability and structural integrity. I suppose I could probably figure it out eventually, but I like it how it is. Thanks for understanding!
  4. Before my DA, I was seriously into Classic Space and had almost all the sets from the 1970s and early '80s. It's difficult to say which was my favourite but 6927 All-Terrain Vehicle was particularly memorable. Maybe it was the the new colour scheme with the white instead of the grey of the earlier sets. Or maybe it was the detachable lab which smoothly lowered onto the lunar surface. Whatever it was, I've had a soft spot for 6927 for a very long time. Unfortunately (or fortunately depending on your point of view), my mother gave all my LEGO away when I went into my DA. I've been an AFOL since 1993 and for a few years now I've been thinking of getting another 6927. It wasn't until this summer though that I started to take action. At first, I looked at buying a complete one on the secondary market, but the set was either too expensive or I couldn't trust the seller's description of its condition. So I decided to reconstruct it piecemeal from parts I already had plus new and used pieces I bought on BrickLink and Ebay. I wanted to wind up with a really nice looking set but wasn't hugely concerned with historical accuracy and was willing to substitute updated parts such as the newer, thicker piece holding the front lights. I learned a few things along the way: The same description of a used part's condition varies wildly from seller to seller on BrickLink even those with good feedback. Some pieces were so good I could hardly tell they were used. Others were so bad, such as parts that were cracked, that they utterly defied their description. Ebay sellers can't be trusted at all. One in particular in Ireland sent me minifigures that bore no resemblance to either their picture or description. It was basically a scam. Peeron set inventories aren't always right. Kudos if you can find the mistake in 6927's. The technique of whitening parts using hydrogen peroxide, Vanish Crystal White and sunlight really does work. I had some used parts that had gone creamy and the H2O2 method restored them to the shade of new white parts. The technique of using Pledege Multi-Surface Wax to remove scratches from clear parts only works if the abrasions are so fine that they render the clear part cloudy. If you can trace the line of a scratch with the naked eye, Pledge won't help. The glass pieces for the windows were the hardest part to obtain. Two BrickLink sellers in the US independently made exactly the same mistake: they both sent me the wrong size. A seller in the Netherlands sent me the right size but they took 25 days to reach me in the UK. It wasn't the seller's fault. I could see from the postmark that he had sent them right away. They actually were in transit for that long. Congratulations to the Dutch and UK postal systems for being the slowest in the developed world! You can disguise minor flaws in used parts by hiding them in the build. For example, one piece had a mark on it that I couldn't remove, but it really didn't matter as it was buried under another part and can't be seen unless you deconstruct the set. Here are some pictures of the set that I now have in my display collection. Apologies for the rubbish photography. Questions or comments?