Search the Community

Showing results for tags 'arduino' in content updated in the last year.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Frontpage, Forum Information and General LEGO Discussion
    • Guest Section - PLEASE READ BEFORE YOU REGISTER!
    • Frontpage News
    • Forum Information and Help
    • General LEGO Discussion
  • Themes
    • LEGO Licensed
    • LEGO Star Wars
    • LEGO Historic Themes
    • LEGO Action and Adventure Themes
    • LEGO Pirates
    • LEGO Sci-Fi
    • LEGO Town
    • LEGO Train Tech
    • LEGO Technic, Mindstorms & Model Team
    • LEGO Action Figures
    • Special LEGO Themes
  • Special Interests
    • Minifig Customisation Workshop
    • LEGO Digital Designer and other digital tools
    • Brick Flicks & Comics
    • LEGO Mafia and Role-Play Games
    • LEGO Media and Gaming
  • Eurobricks Community
    • Hello! My name is...
    • LEGO Events and User Groups
    • Buy, Sell, Trade and Finds
    • Community
    • Culture & Multimedia

Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Country


Special Tags 1


Special Tags 2


Special Tags 3


Special Tags 4


Special Tags 5


Special Tags 6


Country flag

Found 7 results

  1. Hi Guys, I got a bit carried away with my latest lighting setup and thought I would share my progress. I started off just wanting front and rear white/red lights but... well video's speak louder than words.. I have an ESP8266 onboard programmed with the Arduino IDE. The motor is controlled with a RC brushed motor ESC and the LED's (6 in total) are all programmable so they only need 1 output pin for all 6. It is communicating by MQTT and at the moment I am using Home Assistant just as a test controller but the plan is to use it with 4DBrix's nControl software as the features become available. A benefit of using Home Assistant lets me control it from my phone or PC. It will work across the web as well but I don't really have the need to control my trains from outside the house. Not yet anyway... I'll get some video's about the build up when I can Mike
  2. Hey all, I'm working on a big automation project and I needed some automated rail crossings for that. This was already a project on itself which I like to share with you. I work with the 9V system and make trains stop by disabling isolated segments in the rails. That princicple is also used in the automated rail crossing. The crossing is controlled by a printed circuit board which I have designed myself. The PCB is multifunctional and can control two single crossings or one double crossing. This means that the board has two connections for sensors, two connections for signals and two connections for isolated track segments. Printed Circuit Board The heart of the system is stand alone Arduino chip. When the sensor is triggered by a train that is passing by, the non-priority track is disabled and the concerning signal is put to red. As long as the train triggers the sensor, the non-priority track remains disabled. When the train has cleared the sensor, a timer is started to make sure the train has left the crossing before the non-priority track is enabled again. This timer is adjustable by means of an adjustable resistor. Since the PCB can control two crossings, it contains also two adjustable resistors. The value of the delays is displayed on a 4-digit display. This way the system is flexible and can cope with slower or faster trains. Sensor Ofcourse you want to see the thing in action, so I also made a video. In this layout a double crossing is controlled by the PCB.
  3. I'm working on a range of bricks for Arduino - mechanically compatible with LEGO technic, electronically compatible with Arduino - which I plan to make available in our bricklink store early next year. Below you have a short video with a demo: a servo motor controlled by a rotation sensor, both are connected to an Arduino nano board. What do you think ? What else would be useful? Both the motor and sensor are fully LEGO compatible: Some technical details on the motor and sensor: Motor: 0-180 digital servo housing dimensions: 3 x 4 x 5 studs technic axle connection to motor 4 technic peg connectors on the front 4 technic axle connectors on the sides (2 on each side) Sensor: measures rotation with a resolution up to 1 degree variable resistor 360 rotation capabilities housing dimensions: 3 x 4 x 2 studs technic axle connection to sensor 4 technic peg connectors on the top
  4. Greetings. Thanks to herwin's Arduino trains and Lowa's nicely printed track switch motor, I feel Arduino inspired again. I remember I had bought some eBay SG90 servo motors and 3D printed a servo mount at my local public library last year. I dug them out and in 1 - 2 hrs I have it working. I was pleasantly surprised how easy it was to build and code. I reused my Arduino PF train module and code sketch. I connected the servo motor to +/- power and one of the PWM pins. Measured the angles needed for the servo arm to be at to flip the switch. Put the values in the servo.write() function and viola! The pinouts on this servo motor are brown wire is ground, red wire is +5V, and orange is control signal. It can be used with a push button switch to activate instead of fancy Bluetooth devices. That could be useful for public displays where the kids (or adults) can press buttons and watch the train as one half goes one way and the other half tries to go the other way.
  5. To all LEGO train automation enthusiasts, This is a short clip of the final version of our LEGO compatible track switch motor. It has a digital servo embedded in a 3D printed housing. This is a 'plug & play' solution: the motor is strong enough that it doesn't require any modification of the switch (you don't need to open the switch and remove the notch to reduce the force needed to flip it). I also added a picture of the back side so you can see how it can fit onto a LEGO® switch. The housing is made in a custom dark bluish gray ABS filament that matches the LEGO® tracks. The motor has a 6 by 6 stud footprint and it's 2 bricks + 2 plates high. We'll be making controllers for these motors as well, so you can connect them to your PC. However, the motors are fully Arduino compatible, so you can integrate them in you own DIY control system. What do you think ? We're working on a full range of automation gadgets for LEGO trains. What other automation challenges would you like to see solved ?
  6. Hi, I'm new to this forum and what to share my project of the last months: Arduino Powered LEGO train! Check this video to get the first look: What i can do right now: Arduino MEGA powered trains Up to 3 trains (can be more, not tested yet) Self written C++ code for controlling the trains. Trains chooses random his path, no predefined paths yet. HTML5 Web Interface Canvas dynamic train layout Control trains and Points Check status of tracks and Points reset MEGA MEGA connected to Raspberry Pi with send/receive commands via SocketIO (temp solution, waiting for the Ethernet Shield!) Working crossover Working red/green signals (not on video) Magnets in Trains to let reed sensors detect the trains Differente speeds per tracks Multiple station segment (wait a couple of seconds on that segment) Cargo segment (wait couple of seconds and reverse) Track in video has 18 track segments, 4 normal points, 1 double point, 1 crossover, 1 red/green signal, 2 station segments, 1 cargo segment. Some issues left: Speed of the MEGA, not always fast enough to check reed sensors. USB connection to Raspberry Pi not as stable Lots of crashed :) longest stable run with 3 trains: 4 minutes... with 2 trains: 10 minutes Components used (most bought at BangGood) Arduino Mega with shield for connections modified points 3 HW-95 Motor drivers 1 powerfull IR led lots of wires (used old CAT5 wires!) LOTS of time... So far for today! post pictures of details later. Herwin
  7. As part of my quest to control my Lego train layout with an FPGA controller, I decided that I would want some railway signals that would change as the train passed by. I then realized how much of a mess that would be with wires running to and from each LED in the signal and the control board, so I thought to myself: "I wonder if there's something I can build that will help with this problem?" I'm curious to see if there's enough interest in this gadget for me to be able to make and sell them, so that's the main point of this post. Here's the result: EDIT 8-2-2016: Board version 2.1 images In addition, here's a video of one of the first versions of the circuit, before I had even started on designing a PCB. This demonstrates the basic functionality of the controller with a single three-aspect 'signal'. Description: This board can drive up to two three-aspect (light) LED train signals with as few as two I/O pins on the chosen microcontroller. It can be run off of either 3.3V or 5V supplies* a 5V, and will interface with logic signals of the same voltage. If you'd like to drive the two signals independently, it will take four I/O pins. Dimensions: 4 studs by 4 studs, not including the male header pins. As I have yet to receive the prototype for this board, I don't know if the mounting holes fit a typical Lego stud, or if they line up with the corner studs on a 4x4 space - however, I should be able to adjust this without too many problems. The header pins are the standard 2.54 mm/.1 inch pitch popularized by Arduino microcontrollers. Technical Specifications: Supply voltage should either be 3.3V or 5V* be 5V. Absolute maximum current draw should be ~85-90mA, typically ~41mA**. Operation: The IC used to make this board work is the SN74HC139DR, a two-line to four-line decoder. There are two decoder units in each chip, and as a result this board will happily drive two signals at a time, either independently or synchronized together. The A0 and B0 connectors are the least significant bit of the two-bit signal, with A1 and B1 being the most significant bit. There is also an active-low 'Enable' pin for each decoder, which is not broken out to a header; it is permanently tied to ground so that the board is always ready to change the signal. If the value sent to Signal A is 00 (A1=0 and A0=0), all of the LEDs in the signal remain off. If the value sent to Signal A is 01 (A1=0 and A0=1), the green LED will turn on and remain on as long as the 01 signal is applied. If the value sent to Signal A is 10 (A1=1 and A0=0), the yellow LED will turn on (and remain on as above). If the value sent to Signal A is 11 (A1=1 and A0=1), the red LED will turn on (and remain on as above). Signal B works in the same manner. If you want to set both signals to the same light, simply tie A0 and B0 together, as well as A1 and B1 together. If you want to drive the signals independently, don't do that Cost: My calculations for the cost of the components, the PCB, and the time it takes for me to assemble and test each board tells me I should be selling these for $21.99 (USD) apiece. If I was to have these mass-produced, it'd likely be cheaper - however, I'd have to be buying them in quantities of 100, or 1000, and there's no guarantee I could sell them all. As such, I would prefer to take orders from anyone who's interested in buying these and essentially produce them on-demand so I don't have to keep inventory around. Sales Pitch: You should buy this device because it reduces the amount of I/O pins required to drive two three-aspect signals by 33% (four pins instead of six for independent operation) or even 66% (two pins instead of six for synchronized operation). This reduces the amount of programming work that has to be done by the user. In addition, the board is thin enough that it can fit in a single brick's height; as such, it can easily be hidden under some landscaping or even placed under the ballast for a section of track! Moreover, it comes in a lovely purple color with a gold plated finish, thanks to the company who I get my PCBs from. <~~~~~~~~~> *The only change that this would require would be different values for the resistors; I currently have resistors on hand for a 3.3V version, as that is what my FPGA operates at. Typically, Arduinos operate at 5V, so I could potentially offer either variant to suit your needs 5V supply only! More will burn out LEDs and resistors, less will cause undervoltage problems. **The LEDs I prototyped with (and will use on my layout) have a maximum current draw of 20mA apiece, with the IC drawing ~1uA. If there's a problem with floating inputs, it is possible for two LEDs on each signal to be lit at a time, resulting in double the current draw. I have yet to see all three LEDs on at the same time! Now, having read all of this above: Would you buy this gadget? If so, how many do you think would buy, and how much would you be willing to pay for each one? As sad as it is to admit, I'm not able to compete on cost with cheap PCB assemblers in China. Another question: Would you want mounting holes on the board, similar to what I've show here? If so, would you want them to fit a Lego stud? Finally, just to make this clear: I'm not ready to sell these yet. I still have to receive and assemble my prototype, which isn't even the board pictured above (it is functionally identical, just without the helpful pin labels and slightly cheaper because it's a tad smaller). I'd be thrilled to be able to sell these to people once I've verified that it works and doesn't explode, however!