Search the Community

Showing results for tags 'r72'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Frontpage, Forum Information and General LEGO Discussion
    • New Member Section - PLEASE READ BEFORE STARTING!
    • Frontpage News
    • Forum Information and Help
    • General LEGO Discussion
  • Themes
    • LEGO Licensed
    • LEGO Star Wars
    • LEGO Historic Themes
    • LEGO Action and Adventure Themes
    • LEGO Pirates
    • LEGO Sci-Fi
    • LEGO Town
    • LEGO Train Tech
    • LEGO Technic, Mindstorms, Model Team and Scale Modeling
    • LEGO Action Figures
    • Special LEGO Themes
  • Special Interests
    • The Military Section
    • Minifig Customisation Workshop
    • Digital LEGO: Tools, Techniques, and Projects
    • Brick Flicks & Comics
    • LEGO Mafia and Role-Play Games
    • LEGO Media and Gaming
  • Eurobricks Community
    • Hello! My name is...
    • LEGO Events and User Groups
    • Buy, Sell, Trade and Finds
    • Community
    • Culture & Multimedia

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start



What is favorite LEGO theme? (we need this info to prevent spam)

Which LEGO set did you recently purchase or build?



Website URL








Special Tags 1

Special Tags 2

Special Tags 3

Special Tags 4

Special Tags 5

Special Tags 6

Country flag

Found 1 result

  1. A review of the first elements from the FX Track system The forthcoming FX Track system promises to restart the 9v Lego train system that was discontinued 15 years ago. Unlike modern Lego track that is all plastic, the 9v track sections had metal crimped on top of the rails to supply power to the train motors. So with the 9v system all you needed to power your train was to replace one truck with the train motor, there was no need to hide a battery box or receiver on board your train. As a result, you can build a lot smaller models than is feasible with (unmodified) PF or PUP, and do not need to worry about routing wires. This fact makes it a lot easier to build and detail six-wide locomotives. I was fortunate enough to be asked to review the forthcoming 9v FX Track elements. I received three sets of track for review on Friday, including a full circle of R72 curved track (16 segments) and one set of "2x" straight tracks, each at 32 studs long, (8 segments). My complete review took place over a few weeks, broken into several parts. As I progressed I updated this initial post, and it is now complete. [ full gallery ] Part I- First Impressions Summary of Part I The packaging is amazing The production quality of the track elements rivals the Lego 9v track The basic FX design improves on the 9v in two ways: track size noted on the end studs and added cutouts to make it even easier to attach the power leads The FX design greatly expands the geometry options: wide radius curves (R72) and double length straights (32 studs) with a promise of R88 and 1/2 length straights coming later this year. It is incredible to finally have wide radius curves for 9v trains I am coming to appreciate the advantage of double length straights Only one minor issue so far- when the R72 is assembled into a 90° turn and set loosely on the ground it exhibits a small negative cant where the inside rail lifts off the ground and is higher than the outside rail. It appears to completely flatten out when a car rolls over it or you pull it flat. I will examine this more in future parts. Figure 1-1, the unopened boxes Figure 1-2, the interior packaging of an R72 box. The slide out tray is reminiscent of Lego sets from the 1980's. Note the individual track holders and the embossed "Fx" logo on the end of the tray. Figure 1-3, a close up of the R72 track in the box Figure 1-4, another view of the R72 packaging Figure 1-5, the 32 stud "2x" straight track is similarly packed Figure 1-6, another view of the 2x straight track packaging Once opened, it was time to inspect the track elements. The production quality really stood out. Aside from the new geometry these looked like classic 9v track elements, molded in dark stone gray (I did not do a side by side color comparison, that will come in a later installment). There were a couple of unexpected details, first, at the power connection point, there are two pass through channels under the rails, allowing you to easily connect the power from either side of the track. Figure 1-7, a close up of the power connection on the R72 tracks Figure 1-8, and a similar shot on the S32 tracks While this two sided connection is not a critical feature, the fact that it was included shows the depth of thought that went into the design. This feature is more important with the longer track segments than with the short R40 and S16 track from Lego. The other detail is that the track size is clearly but discretely indicated on the last row of studs on either end of the track segment. This feature will become critical as other radii curves are released. Figure 1-9, the R72 mark Figure 1-10, the S32 mark After unboxing, I found the clutch between track segments to be a bit stronger than Lego parts, but that might just be the fact that the track is new. Regardless, it snapped together with plenty of strength and separates just fine. Here's what the track looked like out of the box Figure 1-11, the R72 top and bottom Figure 1-12, top side of an assembled R72 curve Figure 1-13, bottom side of an assembled R72 curve Figure 1-14, the S32 top and bottom When I set the assembled R72 track down to take Fig. 1-12 I noticed something odd, the inside rail seemed to be lifting off the ground. Somewhere between 1/2 plate for a 90° turn to one full plate for a 180° turn. So far this negative cant seems to be completely cosmetic. It appears to completely flatten out when a car rolls over it or you pull it flat. I will examine this more in future parts. Figure 1-15, a detail of the negative cant on the assembled R72 curve. This shot is the most extreme example I had and probably includes some lifting due to the curve being compressed. In general the lift seems to be less than 1 plate high. It does not appear to impact operations and flattens out when a train car passes over. [ full gallery ] Part II- Operational experience Summary of Part II Operational performance is better than expected In my Lego room I normally have a two track mainline of 9v track circling the room. I step over the track on my way in, and then it either skirts the wall or goes under the furniture to stay out of the way. I had to reconfigure my layout to accommodate the new curves. For this part of the review I used a roughly 10 x 10 ft square (3.2 x 3.2 m) shown in Fig. 2-1. The red switch and white S16 are all from my existing layout, while the brown R72 and purple S32 are the new Fx Tracks. The red S16 in cell A2 on the top left shows the power connector for the loop, unchanged from my normal layout. Not surprisingly, my 9v trains have always slowed down in the bottom right corner due to the long distance from the power connector and the large number of rail joints increasing the resistance. I would expect the worst performance for trains running counter clockwise coming out of the lower right curve since it is the furthest point from the power connector. Figure 2-1, the test layout used in this part. To help compensate for the distance from the power connector I used the S32 tracks leading into both approaches to the bottom right curve. So as a result, this layout should have lower drag from trains in the curves due to the wider radius track and lower power drop in the furthest corner due to the elimination of 8 rail joints. For the test train I turned to my GN Empire Builder, essentially a MOD of the Super Chief locomotives and cars. As such, this train represents a long but otherwise typical 9v train. Each engine has a single motor and NO added weight. The lead unit has a 9v light. There are total of 12 cars in the set. They are on standard 9v wheels that have been notched out to reduce friction, as per Fig. 2-2. So these cars should roll a bit better than the normal Super Chief cars. The engines and cars have seen many hours of operation, so none of the mechanical parts are new. Ordinarily this train requires three 9v train motors to run for extended periods on R40 curves. So I have two A-units and a B-unit, each with one motor. Since the Lego 9v transformer only supports two motors at a time, the train normally requires additional power. Figure 2-2, some 9v wheel sets would experience friction because there was insufficient clearance on the frame for the flanges. To solve this, other builders came up with a trick of notching out a few mm of the frame where the flanges are most likely to rub. After rebuilding the track I ran the train for at least half an hour, which helped remove any oxidation on the existing rails. The train ran fine, slowing a bit in the far corner due to the number of rail joints, while still passing the power connection at a safe and reasonable speed. My plan for this test was to use just two locomotives (the A-units) so that I could use a normal 9v train transformer and keep adding cars until the train would go too slow or stop in the far curve. This did not happen by the time I added the 12th car, but it was getting close to the limit, so I did not seek out another car to add to the consist. The simple fact that the 12 car train was able to run fine with just two locomotives shows the benefits of the wider radius curves. The following figure shows the final test train used in this part, note that the train was always in one curve and often in two. Figure 2-3, the test train used in this part I am THRILLED to finally have wide radius curves for my 9v trains. Not only do they reduce the drag on the curves, the trains simply look better on the R72 curves compared to R40's. Figure 2-4, an example of 32 stud long cars on R72 curves, a huge aesthetic improvement over R40 curves A six wide passenger car built to scale could be 52 studs long and an eight wide could be 68 studs long, they would still look a little awkward on R72 curves, but they should be able to take the curves and the Fx Track box suggest that R120 and larger radii are in the long range plans. Figure 2-5, an example of a 4-8-4 steam locomotive on the R72 curves. This engine was designed to comfortably negotiate R40 curves through the use of a sliding mechanism on the drivers, but like the cars, it looks a lot better on R72 curves. Figure 2-6, a panning shot showing the 12 car long train pulled by two locomotives passing through the curve furthest from the power connection. This video shows the test train approaching the "far curve" at full throttle (speed setting 6) and this video pans through the curve as the train passes. With 9v trains the slow speed operations are probably a greater challenge than the high speed due to the power drop of the rail joints and oxidation on the rails. I don't think I would do the following test unsupervised, because a stall could damage the motors if you do not cut power quickly, but with supervision it is interesting to see how slow the train can go with Fx Tracks. The 12 car train would start on speed setting 3 and run indefinitely. This video shows the test train approaching the "far curve" at speed setting 3 and this video pans through the curve. When I dropped to speed setting 2 it stalls in the corner furthest from the power connection. That's pretty amazing given the length of the train and distance from the power supply. I repeated these tests with the steam engine. Note that this locomotive is powered by two 9v motors, one for the pilot truck and one for the trailing truck. I had to set out three cars for it to comfortably run at a reasonable speed over ground at speed setting 6 on the transformer. One of those cars is countered by the addition of the unpowered tender, while the other two cars likely is due to increased drag from the long wheelbase of the steam engine and the added drag from the running gear. The steam engine would not start until in speed setting 4, but once moving I could drop down to speed setting 3 and it would run indefinitely. If I had a second power connection on the far side of the layout I am sure I could have dropped to speed setting 2, but that would negate an important part of this test. On the other hand, the track in the most demanding location was new and clean. So as I said already, I would not do this test unsupervised because a stall could damage the motors if you do not cut power quickly. [ full gallery ] Part III- My personal thoughts so far As I've said, I am excited to have the R72 curves, but after working with the Fx Track, I've come to two realizations that I was not expecting. First, going into this I thought that R72 curves were actually on the small side. I have several loops of large radius plastic track from at least three manufacturers. I love the look of R120 curves at shows. While the R72 is leaps and bounds better than R40, had there been a selection of 9v radii I probably would have gravitated to R104 and R120. After installing the R72 curves in my Lego room I realize that R120 would never work in my home layout. After these tests are over I plan on installing the R72 permanently on my home layout and to start lobbying my club to invest in the larger radii 9v curves. My other preconception going into this was that double length track segments would be nice, but I've got a "ton" of track already. In retrospect, by 9v standards I do have a lot of straight, but only enough to double track a 10 x 10 ft square (3.2 x 3.2 m). So that alone makes the availability of straight track enticing to me. Now the fact that it is double the length of Lego straight track means it has half as many rail joints, and so the power loss should be much less. I could see someday converting my mainline to the double straights and using the 9v Lego track for yards and sidings. Part IV (added Feb 10) Summary of Part IV Round trip time results show that the new track improves the running speed Added additional images of trains in the curve In an effort to quantify the impact of resistance (both electronic and mechanical) I undertook a study of the time it takes the test train (Fig. 2-3) to complete a loop of the test track (Fig. 2-1) with three variants: (1) as shown in Fig. 2-1, (2) replaced the S32 straight tracks each with a normal pair of S16 tracks, adding 8 track joints to the layout, and (3) replacing the R72 curves with R40 curves only in the lower right corner (the other three curves remained at R72), and adding back in four S32 segments to keep the number of track joints the same as case 2. These three variants are shown in Fig. 4-1. Figure 4-1, three variants of the "far corner" used to study the time to complete a loop of the test track For this study I used a cold start of the train under each condition. I let the train make approximately 3 loops before beginning testing. I then timed 5 consecutive loops at speed 6 followed by 5 consecutive loops at speed 3. Throughout I tallied both the individual loop times and the total loop times for the 5 loops. In all cases the individual loop times fell within a 1 sec range, most likely reflecting my reaction time. No stalling occurred and the full 12 car train was used throughout. In this case adding the 8 additional joints going from #1 to #2 added 4% to the round trip time at both speeds, then converting to R40 going from #2 to #3 (#1 to #3) added 13% (17%) for speed 6 and 21% (26%) for speed 3. Table 4-1, average time to complete a single loop of the layout at speed 6 and speed 3 (1) R72+S32 18.0 s 35.8 s (2) R72+S16 18.7 s 37.3 s (3) R40+S32 21.1 s 45.1 s Table 4-2, relative increase to case (1) or (2) at speed 6 and speed 3 (2)/(1) +4% +4% (3)/(1) +17% +26% (3)/(2) +13% +21% Next, extending Part II I have added a few more pictures. Figure 4-2, a comparison of the same train in an R40 curve and an R72 curve Figure 4-3, an example of 52 stud long cars in the R72 curve [ full gallery ] Part V (added Feb 20) Summary of Part V A deeper look at the negative cant Pre-ballasting considerations Counter-clockwise climbing of the rails For this study I revisited the negative cant. After first observing the phenomena I wrote Michael Gale about it and he replied, Your observations about the R72 "cant" is not something we have seen with R72. However, it is something we have observed with a few or our R88 iterations! We suspect it is either the result of "settling" of the product from the climate in Hong Kong vs. North America or it is accumulated stress in the metal from imperfect crimp points. I wonder if a slight twisting back and forth along the long-axis of the track might help "wiggle out" any accumulated tension in the metal/plastic crimp locations? In any case, bends and twists in Lego track items is not uncommon. I've observed this phenomenon in Lego brand track elements in both 9V and RC. Big molds such as the S32 and R72 are more expensive to tool since the mold requires water cooling channels to precisely control the cooling profile of the plastic in the mold. If the cooling is not controlled properly, then stresses accumulate in the plastic from differential temperature/solidification profiles. When resetting my layout I have one hard to reach corner under a shelf that is behind a table (I personally like a layout where the trains disappear for part of the circuit). I put a 90° segment of the R72 tracks back there and as I did, I twisted the rails a couple of times to relieve the stress. It seemed to work, but it was dark, on carpet, and I didn't feel like taking any measurements. Today I sought to quantify what I observed. My first step was laying out baseplates to ultimately pin the track down. Figure 5-1, Cant exploration Figure 5-2, With the track loose, the cant was about 1 plate in the middle of the 90° curve Figure 5-3, Pinning the track down as if I were going to ballast. Figure 5-4, I had thought that simply pinning the track down would have pulled it flat, but the 1 plate gap remained. Figure 5-5, After a bit of twisting (about 3 cycles back and forth on each segment), the cant had diminished but was still evident. Further twisting seemed to yield marginal improvements. Figure 5-6, But I had not captured all aspects of ballasting, this time I added one S16 on either end of the curve and plates over all rail joints. Figure 5-7, The cant seems to be down to about half a plate at this point. Figure 5-8, Time to get tough, I resorted to twisting the track in the opposite direction of the cant, pressing down in the middle and up on both ends (I actually used two hands to do this, but I couldn't fit the camera in my mouth to photograph it, so you'll have to imagine my right hand in the picture) Figure 5-9, That seemed to eliminate almost all of the cant, but a hint is still there. Figure 5-10, Here's an R40 on the inside for reference Figure 5-11, These R40 have been used a lot and do not show any cant I do not know what the cause is, but after spending some time working with the track I wonder if it has to do with the rail connections, the track segments are pretty flat on their own, they only arch up when connected together. As noted previously, the cant does not seem to impact operations at all. All of the testing to this point has been with the cant. I've also run several hours of other trains on the R72 without problems. In my experience the cant flattens out when a train goes over. Figure 5-12, While I had the baseplates out, I also investigated the S32. Note this layout includes a joint at the edge of a baseplate and another joint in the middle of a baseplate. This test was to make sure there was no significant accumulation of error due to the rails being a fraction of percent too small or too large. Figure 5-13, Everything tacked down good and snug, no apparent problems. Figure 5-14, With the track tacked down, I checked the clearance of typical boundaries and no conflicts were found. Next up, revisiting the possibility of climbing rail joints when running counter clockwise through curves (more details about the problems with 9v R40 curves here). Figure 5-15, 9v R40 curves risk climbing at the rail joints Figure 5-16, Test layout for climbing at rail joints. The "D" shaped loop has two 90° R72 curves and two 90° R40 curves, all with straights in between. The PF test locomotive was my worst offender for climbing R40's. After running the locomotive for about 15 min there was no complete climbing event on any of the curves, but it did "jiggle" a lot on the R40 joints. At which point I noticed that almost all of the wheels had traction bands on them (all four small wheels on the pilot truck, and all four flanged drivers). My recent experience with the Crocodile locomotive has led me to suspect the traction bands grip 9v rails better than they do the plastic rails. So I pulled all of the traction bands off except a single flanged driver. Most of the jiggle was gone when going around the curves. The pilot truck bounces on just about every R40 joint, and very occasionally on any other joint. I then ran the locomotive for another 1.5 hrs with no derailments. So my conclusion here is that the traction bands probably do exexperate the problems when running counterclockwise on R40, even without the bands I still don't think I would run counter clockwise with this locomotive on R40 curves on a raised layout. I would feel fine running counterclockwise on R72 curves (9v or plastic). [ full gallery ] Part VI (added Feb 28) Summary of Part VI power connection colors and clutch bonus track This part details my final experiments. Figure 6-1, An example using the two wire pass throughs, the Lego brand tracks only have one pass through. This allows you to use the 9v connectors from either side, which is particularly useful on the curves or double track sections. Figure 6-2, Lego RC track in the middle, between two Fx S32 to compare colors. Figure 6-3, Old gray Lego 9v track in the middle, between two Fx S32 to compare colors. After comparing the colors I did a spot check of clutch using 2x4 bricks comparing Fx S32 against Lego RC S16. This test was purely subjective and I found no difference in the clutch from both the top and bottom of the track segment. I repeated on the R32's, again I did not find a difference. Figure 6-4, With the formal experiments complete, I reassembled my layout (note plastic ME R88's standing in for future Fx and rare metal ME S8 in the shot). It is really nice to have the wider radius curves in the layout. The straight segments are a bit shorter but the curves are so much better. Figure 6-5, The surprise bonus of the conversion are the 40 segments of S16 made surplus from the addition of the new curves (4 per 90° of R72 and 6 per 90° of R88). [ full gallery ] Closing thoughts (added Feb 28) I suspect the primary customers for this first round (and probably 2nd and 3rd rounds) of the new 9v track will be people who already have 9v trains. As someone with 9v, the wide radius curves are AMAZING. These early rounds are not enough of a system to lure a plastic track builder over to metal rails, nor are they meant to be. Power pickup wheels will probably be the gateway to the plastic track folks. If you can charge your batteries from the track while running or when sitting on a siding, that will entice some to invest in a bit of 9v straight track. Once there, the prospect of charging while running with half a loop of 9v track will become enticing and before you know it, you might want to (literally) close the loop and buy track powered motors. Each successive round will bring this closer to being a complete system, but each round depends on the success of the rounds before it to provide the development costs. I think it is amazing that Michael is so transparent with his costs. Now it is up to the market to decide. The prices are not to be sneezed at, but if you need 9v parts the prices are very reasonable. And if you need wide radius 9v, they are the only mass produced option to date. If you still run 9v and your space is wider than 30 inches (77 cm) the new Fx wide radius curves are a no brainer. It is nice to have the option of new 9v straight track and as noted above, the reduction in rail joints also reduces the resistance. Beyond the reduction in joints, the new straights do not add a new geometry, but back in the day I never seemed to have enough straight track. If you have a ton of plastic track and PF/PU trains, wait and see what develops. Perhaps 9v might never be for you. It would likely take a future killer app to lure you in, e.g., power pickups for charging on part of the loop or while parked on a siding, or DCC for more extensive control. If you run PF and have not yet made the jump to PU, it might be worth holding off making a large investment in PU to see what develops with the Fx 9v system. Similarly, if you are just getting into Lego trains and you do not like the hassle of batteries or hiding the battery box in your builds, it might be worth holding off making a large investment in plastic track and see what develops with the Fx 9v system. The cost of the S32 are comparable to used S16 at current bricklink prices. Dark blay S16: new $7.50, used $4.75 Dark gray S16: new $8.00, used $4.20 Dark blay S32 new: $8.75 (or $4.40 per 16 studs) I believe set 4515 (8x straight rails) was $16 ($20.50 today) when it was discontinued in 2007, but brickset has it listed as $13 ($16.75 today). Putting the price for new S16 from Lego between $2.10 and $2.60. So the Fx are about twice the price of what Lego sold the rails for. But Lego was losing money on the metal track when it was discontinued, so Michael has recreated an expensive production system on a much smaller scale and is still able to retail for a fair price. Of course what is fair and what one is willing to pay is a personal matter that varies by individual. Each 90° curve conversion from R40 to R72 frees up four S16, that's 16 straight track segments per loop. Converting from R40 to R88 increases that to six and 24, respectively (net of 200" or 16'8" or 5.1 m). With my double track main line that frees up 40 straight track segments. So the R72 conversion frees up 16*$4.20 = $67.20 in used straight track and the R88 conversion frees up another 24*$4.20 = $100.80. Assuming you do not expand your footprint, after the conversion the straight segments are a bit shorter but the curves are so much better. [ full gallery ] Pricing and availability (added Feb 14) Fx has provided information on pricing and availability, available here. R88 impressions (added Aug 22) I preordered a loop of R88 for myself as soon as the ordering window opened. Note that a loop of R88 is roughly twice the cost of a loop of R72 because the number of track segments in R88 is double those in R72 (90° takes 4x R72 or 8x R88). On the other side of the cost equation, the R88 saves you an additional 8x S16 compared to R72 on a loop of the same size. I got my R88 loop and installed it this past week. It is amazing to see my 50 stud long cars remain over the track on the curves. But anyone could have guessed that, grin. The other thing I noticed is that I still have a large power drop on my roughly 8'x8' (2.5m x 2.5m) layout, which is NOT a surprise since it is simply a function of the number of rail joints. As someone with surplus 9v parts, I fished out several 1m long 9v extension cables from my collection and added another power connection on the far side of the layout. Aside from dealing with a bad cable the solution went smoothly and the trains barely slow down anywhere on the loop. Even with R88 I do not feel comfortable going above the 5th notch (out of 6) on the Lego transformer, the train is simply moving too fast. The need for additional power connection points should not be overlooked. This issue is simply a function of the 9v system due to the relatively large resistance at the track joints. In that respect the S32 will help you build bigger with fewer power connection points. In any event, my loop has 80-90 track segments in it, so I would estimate that I would need another power connection for every 40-50 track segments in the loop. Of course the exact number of segments might vary depending on the weight and drag of your trains.