Recommended Posts

Hi,

I am presenting you my latest MOC – a mega monster, which I would gladly have it parked in my backyard (I would of course need a large backyard first) - MAN M1001!

MAN%2BM1001%2B-%2B1.jpg

MAN%2BM1001%2B-%2B2.jpg

MAN%2BM1001%2B-%2B3.jpg

MAN%2BM1001%2B-%2B4.JPG

Since this creation was being built during a lot of night shifts since the end of March 2013 until the end of July 2014, me and this beast are almost in a kind of relationship and through that year and a half I have hated it and loved it again, almost left it, but returned to it... :grin_wub: Now, as this saga of mine is soon to end (recycling), I'll indulge myself a little and also write something about the real truck and some creative adventures I've had building. I also want to present the MOC with a bit more photos, I hope it is OK, I haven't found any limit regarding number of photos in a post. If there is some violation, I'll gladly make it right. Those of you, who are not so much into reading, I suggest you just skip it and proceed to photos – no hard feelings.

MAN M1001 / M1002 / M1013 / M1014

I haven't found extremely much data on the web. There is a lot more on younger M1001 relatives KAT I and KAT II. A summary of the data obtained is as follows:

Those trucks' production started in the early eighties in Germany in the factory MAN AG for the needs of American armed forces and have been designed as a tactical 10-ton tractor units for transport and supply of tactical missiles Pershing II (MGM-31C) and Gryphon GLCM (BGM-109G). Through several versions and successors the MAN 100x series proved to be one of the best off-road tactical vehicles around the world. According to some data, it should not have any problems with fording up to 120 cm water, climbing slopes of up to 60%, sideways driving on slopes up to 40%, overcoming the 1.9 meter trench and overcoming step to a height of 0.6 m (depending on tire size and undercarriage configurations).

American forces have used four versions of the basic truck that is powered by 400 horse (several data) V10 turbo-diesel. All versions are built on extremely torsion-resistant box section framework 8x8 chassis with steered front two axles. All axles are rigid "live" axle with rubber mounted springs and large shock absorbers.

Basic models are the M1001 - a tractor with a crane, winch and even 30 kW power generator and the M1002 - "tow truck" or a wrecker with a crane, a small flatbed and a carrier for a bunch of spare tires.

A little younger models are the M1013 which had a crane in addition to an even bigger flatbed, and the M1014 which is plain flatbed truck.

All, except the M1002, which is longer due to towing equipment, are 8.57 m long , 2.5 m wide and only 2.75 m high (cab and lift), 2.85 m (spare tire) and 3.1 m (the generator).

Sources:

http://olive-drab.co...tos_man_8x8.php

http://man.army-uk.c...quip.php?ID=333

http://www.truckspla...odel.php?id=646

http://heavycherry.c..._tarpaulin.html

At the beginning of my research and modeling, I came across information somewhere (currently I cannot find the source), that the investors (U.S. armed forces) demanded the trucks to be low enough that they can be transported by rail. It is from this demand the trucks got the recognizable cab with trimmed top edges, so the loaded trains remained in the characteristic profile of the rail. With this same purpose the engine is not mounted under the cab, but behind and partially in the cab between the two seats.

MAN M-MajklSpajkl

Those of you who dug a little through the source pages of the above given description of the real trucks, have probably quickly noticed, that my MOC is actually neither one of the types described - it's a hybrid. At the beginning I fell in love with the M1001, I liked it’s silhouette by far the most and began modeling , but later I found out that because my axle design, the chassis came too high and that it does not look too good as a tractor - so therefore I camouflaged the chassis with a flatbed and of course the obligatory crane. I designed the flatbed and the crane without leaning to the actual models and therefore got a little strange formation of the crane and the outriggers. I tried to replicate the crane as closely as possible though.

Modeling process began by obtaining blueprints and photo-material of the M1001 and scaling it to the size of 9398 4x4 Crawler tires. Scaling to these tires produced an approximately 1:14 scale, which already shows the size – but hey, building big was the main idea! :excited:

MAN%2BM1001%2B-%2B5.JPG

In addition to the cross-sectional blueprint of the rear I also used an "en face" photo printed out in scale, so it was much easier to model the characteristic front of the truck. You are to judge, how I pulled it off.

MAN%2BM1001%2B-%2B6.JPG

MAN%2BM1001%2B-%2B7.jpg

I must say that my MAN is not nearly as technically superior as I have described its big brothers above and that it is a beast only if you use a little imagination or see it on photos… I'll soon tell you why.

But first,...

1. MOC DATA:

Length: 79 studs overall (63.2 cm) – I had to lengthen the chassis for 2 studs due to drive train

Width: 23 studs (18.4 cm) + rearview mirrors max. 4.5 studs on each side

Height: 25 studs (20 cm - top of the cab without air vents), 31 studs (24.8 cm - top of the folded crane)

Weight: 3680 g (truck) + 280 g (crane) + 640 g (4 power generator (cargo) only one with six AA batteries) = 4.6 kg

Part count: ALOT! I will provide exact number when I disassemble it, I'm guessing about 3000-4000 pieces - update: after painfull disassembly I counted 4404 parts.

Motorized functions:

- 8x8 propulsion (reduction from the engine to the wheels 1:21 in 1st gear and 1: 12.6 in 2nd)

- Front two axles are steered in first/second ratio 1:0.67 + working steering wheel

- Two speed gearbox (1 - 1:1667, 2 - 1:1)

- Differentials lock on axles 3 and 4

- Working windshield wipers

- Automatic pneumatic valve for lowering / raising the outriggers

Other features and details that I would like to highlight:

- Rigid full-sprung axles (live axle) - three point hitch

- PF LED headlights, on/off via the PF pole reverser

- Opening cab door

- Adjustable rearview and side view mirrors

- Manually pulled out outriggers

- Separately opening sides and rear of the flatbed

- "Access" to the gearbox via a door in the bottom of the flatbed

- Access to the imaginary controls for pneumatic or. "Hydraulic" pump through the side door on the flatbed

- Access to power switch for the front light through the side door on the flatbed

- Spare tire

- Illustration of the engine behind the cab

- Manually "driven" crane Atlas 4300 M5 with a double pull-out arm and winch

- "Rich" dashboard

- Seats and shifting stick in the cab

- Protective grids for front and rear

- Cargo – power generators (the idea was born out of a major sleet storm in our country past winter)

- I must have forgotten something...

PF components used:

- 2 x XL motor for propulsion (engine coupled with the so-called "adder" differential)

- 1 x L motor for steering

- 4 x M motors (auto-valve, gearbox, differentials lock, wipers)

- 2 x PF switch (on / off lights, pole reverser on one of the XL motors)

- 1 x PF led lights in front

- 3 x IR receiver (v2 drive and wipers, 2x the ordinary for the rest)

- 4 x large BB (one for power, three for lipstick – power generators)

- 1 x IR Speed Remote control (drive and wipers)

- 2 x IR remote control (the rest of the motorized functions)

- 1 x PF extension wire 20 cm

- 2 x PF extension wire 50 cm

And now some photos to take a breath during such a heavy reading…

Looking mean…

MAN%2BM1001%2B-%2B8.JPG

Ready to unload…

MAN%2BM1001%2B-%2B9.JPG

The crane stood relatively well to the loads applied, due to much bending I have only tried it with the empty generators.

MAN%2BM1001%2B-%2B10.jpg

MAN%2BM1001%2B-%2B11.JPG

High loads (kids) led to the main two LA snapping of the pins, since they were not transversally braced.

MAN%2BM1001%2B-%2B12.jpg

Atlas 4300 M5 crane

Flatbed with lowered and removed sides…

MAN%2BM1001%2B-%2B13.jpg

The generators… I find them quite cute, so the lineup was necessary.

MAN%2BM1001%2B-%2B14.JPG

For those who have yet to read themselves out of breath, I would have a little description of the "guts" of this birdie.

Bare naked chassis (more or less) for starters:

MAN%2BM1001%2B-%2B15.JPG

2. CHASSIS AND BODY

The truck was meant to be modeled as realistically as possible and so I decided for the chassis of two main studfull beams, which were laterally connected in a fairly robust box-section frame by the 5x7 technic frames. The beams were changed countless times, because in the course of construction a need for holes exactly where they were not would came up, or there were certain parts in the way, etc. The cabin is built from a combination of studfull and studless technic bricks, and even some sytem bricks were used for better looks. All other parts of the truck are in "full studless" technique, with some little system bricks add-ons.

3. AXLES and DIFFERENCIALS LOCKS

As soon as I had the idea for a 8x8 truck, along came the idea of planetary reduction within wheels. There are very good solutions for this kind of reduction within the "large racing" wheels (ZBLJ), for "medium racing" I found none, well at least not such that would ensure that the technic turntable is as close to the wheel as possible. I thought of a solution shown below, which looks good, but has the disadvantage that it is necessary to attach the wheel to the turntable before attaching the turntable to the axle. The wheel is attached to the freely rotating 4L axle with stop, so it must be pushed next to the turntable well and in such a way that small technic bush and the free end of 2L red axle are caught between two spokes of the wheel. Of course, the wheel must be turned with the spokes inside. It was a little easier to push the wheel into place when I got some new axles 5L with stop... I find this kind of reduction very interesting, but it creates a lot of friction, which is fatal as you'll read further on.

MAN%2BM1001%2B-%2B16.jpg

The trucks' axles were the first parts designed and they too, like the chassis, have seen many, to many variations. Back then, when I was designing the axles, I only had enough of the "new" bewel differentials. Locking those is a little more volume-consuming, and therefore such a fat boy for the axis, which you can see below.

MAN%2BM1001%2B-%2B17.JPG

Differential is actually locked by locking a "by-pass" axis. Because I undertook this for the first time and because I spent all 9L links I had on suspension, it was a real hassle to find a solution for remote locking differentials. I figured out some kind of lever solution, where the mechanism mounted on the chassis practically just hugs a small lever on the individual truck axle. In such way both of the non-steered axles' differentials are synchronously locked. Unfortunately, the system worked well for the locking, while the unlocking of the rear axle was very hard or almost never unlocked -I blame the designer! On the photo below, you can see the transmission from the motor to the double "fork" from the bottom side of the truck and the »fork« hugging the lever in the detail in the lower right corner of the photo.

MAN%2BM1001%2B-%2B18.JPG

4. PROPULSION

This is more or less a sad story - maybe mix of bad decisions and inexperience. Yeah, THAT THING WON'T DRIVE! As you will see in the video I’m preparing, it only works in the "air" mode. The reason? This colossus is heavy as ... and my enlightenment has insisted on feeding drive to all four axles from a single source. Imagine now half a meter long technic spindle full of universal joints and to ensure easy win, use two CV joints directly on the power source. Those babies sure can take some torque - NOT! Add another bunch of gear in each axis and in each wheel and you get a CV joint without the »joint« part. Anyway ... noted, written in the black books of things not to do! After many attempts, I decided to leave the matter as it will; it should be as an example for the future.

5. STEERING

Again, things could not be much worse here, well I suppose it could fall apart completely. However, I like the concept that I tried to put to work very much, so it was again left to be represented in the "air" variant:

Proposed design does not use the usual steering rack, but a system of levers, a bit closer to the real 4 axle truck steering system. One wheel hub is pushed forward and backward and this hub is linked to its own pair to the other side of the axis by a rod. The theory is, of course, one thing, and the reality is another. Please find below a display of described system, first the mechanism on the left side of the chassis where the motor is. The worm screws drive two lateral axles and steering wheel in the cab for which I've succeeded quite an interesting transfer with simultaneous reduction 1:8 of L motor speed (see the detail).

MAN%2BM1001%2B-%2B19.jpg

MAN%2BM1001%2B-%2B20.JPG

Each of the transverse axis has a different reduction of rotation, so as to ensure a smaller turning of axis no.2 against axis no.1. Thus, the reduced rotation drives the levers, which steer the wheels. For this reduction, there is quite a simple calculation using geometry - for my MAN it should be 1:0,73. I spent some time looking for the most ideal relationship between the technic gears, but then again, a compromise, and I installed the ratio of 67% (1 - 12/24; 2 - 12/36), which is not very far off.

The system, unfortunately, did not work under the weight of the cab and there was too much backlash in all these levers. In order to alleviate the matter, I connected the levers with technic friction pins, hence the axis are a bit jumpy when "air" steering due to overcoming the friction in pins. I know, I should change back to frictionless pins for »air« steering presentation, but… hmnjah…

6. WINDSHIELD WIPERS

Motorized windshield wipers are one of the cutest and reliable functions of this little toddler, especially since they're controlled via the IR Speed remote control and thus can adapt to the amount of rain.

MAN%2BM1001%2B-%2B21.jpg

It is a simple version of the system that drives wheels on steam locomotives - the rotation transferred to the oscillation. It only bothers me, that I somehow didn't manage to get the motor that drives the wipers somewhere in the bottom of the cabin and therefore there is a driving axle between the seats leading to the motor behind the cab, which is to me quite a fine mockup for the real engine. The reason that there is no room under the cab is in the fact that the main beams of the chassis stretch quite deep into the cab and that the suspension of the front axle is attached just below the seats.

7. AUTOMATIC PNEUMATIC VALVE and CRANE OUTRIGGERS

When I was almost finished with the truck, there was only one free PF function left and the crane outriggers were missing. There was practically no space left, except behind the spare tire. Luckily, I managed to squeeze in there a modified version of the automatic pneumatic valve by

My version is just geometrical adaptation to the space that was available and I think I succeeded well. For those who may not know (not many here I guess): automatic pneumatic valve (there is quite a handful of different types from several inventive authors on the web btw.) is a pneumatic valve with only one motor powering a pneumatic pump and switching the lever of the pneumatic valve at the same time. I had quite some difficulties and I spent some time looking for the right combination to attach the valve softly enough to work as it should. If it was too stiff, it would not change the valves position when changing the motors direction.

MAN%2BM1001%2B-%2B22.JPG

From left to right you can see a pneumatic pump, driving PF M motor and worm with a pneumatic valve on the photo below.

MAN%2BM1001%2B-%2B23.JPG

The solution for the outriggers manual extension is IMHO really a small piece of art. Well, a good idea at least. They’re mounted in 5x7 technic frames, through which two axles slide and are protected from falling out by a connector. Since the pneumatic tubes pushed the outriggers outside, I made a "lock" to hold them in place. Loading capacity of the outriggers is of course purely symbolic.

MAN%2BM1001%2B-%2B24.JPG

CLOSURE, FINALLY :head_back:

And now to conclusion: I'm tired, and not of writing so much of my bad English. I will not start on such a vast (at least to me) and long lasting project for some time, if ever again. I'm really happy that I can finally fully present this MOC to you and I am pleased also that I insisted until it was finished, even though not completely succeeded, but managed to learn a lot of new in terms of design and construction of such a model. I am pleased with the level of small details, which I think for me is increasingly important for a MOC to have.

Thanks to all who survived this long writing, as well as the rest of you who just looked at photos and grimacing at the amount of the text. :innocent2:No hard feelings, eh?

For those curious, find at this link a number of additional photos, including some of those during the construction, which I didn’t include in the presentation.

Best regards, here is another photo of my third child to conclude.

Miha

MAN%2BM1001%2B-%2B25.JPG

And finally - a video:

Edited by MajklSpajkl

Share this post


Link to post
Share on other sites

I see it but I don't believe it! :sweet: It's beast! A gargantuan beast!

I'm in awe of the skill (and no doubt patience :classic:) needed to build something of this complexity, I simply wouldn't know where to start! No wonder it took so long.

Awesome :thumbup::thumbup::thumbup::thumbup::thumbup:

Share this post


Link to post
Share on other sites

Fantastic truck, and perhaps the most detailed posting of an MOC I've seen to date. Really looking forward to seeing the video :thumbup:

Share this post


Link to post
Share on other sites

Amazing MOC, really great job! :thumbup:

Such a big model but with such a great details - looks great! :thumbup:

It has great functions: Motorized windshield wipers controlled with the IR Speed remote control, turntable for locking diffs, motorized crane outriggers... Very smart, compact and effective!! :thumbup:

I love it! :wub: It is obvious that you've put a lot of effort in it but, in my opinion, it was worth it, thank you for sharing it with us! :thumbup:

Share this post


Link to post
Share on other sites

Its so awesome! :thumbup: I'm gonna try to make my own! Now I have to haven't read everything (yet) so I could have missed it, but in what scale was this made?

Share this post


Link to post
Share on other sites

Thats a really amssive model, mate! Also a great reconstruction of the real deal. The way you made the planetary gear hubs is just awesome and I might steal it :wink:

About diff locks, maybe you could use small pneumatic cylinders for those?

Cant wait for a video!

Share this post


Link to post
Share on other sites

Wow, what a beast! Fantastic job. :thumbup: :thumbup: :thumbup:

So many cool functions and details.

Good job sticking with it for so long, hopefully you learned heaps and that's the best part. :laugh:

Great presentation as well.

I'm really looking forward to seeing the video. :grin:

Share this post


Link to post
Share on other sites

Wow, what a beast! The write up and presentation were excellent! It's a shame that the propulsion and steering didn't work out as planned, but the shear size and level of detail more than makes up for it. I am eagerly awaiting the video.

Truly excelent work,

John

Share this post


Link to post
Share on other sites

Superb one!! I have a question, as I've already used a "adder" differential between the 2 Xl motors, in exactly the same position....but mine is the new differential...with bevel gears....yours it's the old one! Which gears did you use from the differential to the rest then?

Share this post


Link to post
Share on other sites

Wow, thank you all for such a great response, I'm really honored by your comments. I was very skeptical about such a long post, but I'm glad you liked it :grin: and that you've managed to go through the lines. I hope you will all be patient enough for the video, because next 10 days I'll be extreemly busy and I think there is no chance for me to edit the video sooner. Sorry...

And now to answer the questions:

Its so awesome! :thumbup: I'm gonna try to make my own! Now I have to haven't read everything (yet) so I could have missed it, but in what scale was this made?

It is scaled to the size of the tires - approximately 1:14.

Thats a really amssive model, mate! Also a great reconstruction of the real deal. The way you made the planetary gear hubs is just awesome and I might steal it :wink:

About diff locks, maybe you could use small pneumatic cylinders for those?

Cant wait for a video!

Thanks ZBLJ, your RC 8x8 Tatra with PP wheels was also one of the inspirations for my truck :wink:, and yeah absolutely, go ahead, "steal" my planetary reduction design, that's why it's there, I'm sure you'll even improve it!

If I had a pair of small pneumatic cylinders, they would be my first choice to lock those diffies, but since my wallet is always a bit to thin, I decided to find another solution... You can see practically all my pneumatic stock here in this truck, it sure ain't much.

sweet, how much load can carry the crane?

Well, now that you've asked, I hung the red and the blue generator (the red being full with 6 AA batteries) on it together and it still held, although I could see it suffer. The load weight was 383 g, according to my wife's kitchen scales. There was a lot of bending, but nothing too fatal and it would need a ratchet break for the winch, since the friction of the blue axle-pin was insufficient. This experiment was performed on the crane detached from the truck, I believe it wouldn't held such weight on the truck since it is only attached with 8 vertical pins, no transversal bracing.

Superb one!! I have a question, as I've already used a "adder" differential between the 2 Xl motors, in exactly the same position....but mine is the new differential...with bevel gears....yours it's the old one! Which gears did you use from the differential to the rest then?

This pictures will explain it enough I hope. Here you can see a 24 tooth gear propelling the gearbox...

0.7.JPG

...and here is the whole assembly with the adder and the gearbox covered with pneumatic hoses.

8.2.JPG

Thanks again y'all. You are awesome!

Share this post


Link to post
Share on other sites

This is very cool , you should think about doing some instructions , I love the red and yellow looks really nice .

Share this post


Link to post
Share on other sites

This is very cool , you should think about doing some instructions , I love the red and yellow looks really nice .

Thanks darksheep, sorry, but I think that chances for me making instructions for that big-boned fella are almost as good as none. Even with only photo sequnce type of instructions it would take so much more time, than I am able (and willing) to spare at the moment. I don't think that such huge models are that appealing to a vast number of builders. Let's be honest, as much as I and many of you like my model, it is not such high quality MOC, that people would buy many missing parts to build a huge bathtub, that won't drive :-)

Wow that is one large truck, it'll be interesting to see how it drives.

tim

Sorry there timslegos, unfortunately you will not see nothing interesting, because it just does not - drive. I wrote all about it in my presentation, but I cannot blame you for not reading the whole "novel" ;-)

Glad to see someone invest so much time and thoughts into such a massive model. Great!

Thanks, I appreciate it. It did took a long time, and as much as I like it, I am also a bit fed up with it. Well, I'll still stick with it for a while, I promised my fellow Slovenian builders to bring it to our national LUG gathering.

Edited by MajklSpajkl

Share this post


Link to post
Share on other sites

What a rugged looking machine. Well done, and great presentation. Thank you for posting it. These projects are sure inspiring for this new member.

Based on what I've seen on this Forum, all you have to do is show one picture of this project to Blakbird, and he'll have the instructions finished in about 3 days!

Edited by JDC

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Recently Browsing   0 members

    No registered users viewing this page.